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Abstract. Reinforcement learning is a machine learning area that stud-
ies which actions an agent can take in order to optimize a cumulative
reward function. Recently, a new class of reinforcement learning algo-
rithms with multiple, possibly conflicting, reward functions was proposed.
We call this class of algorithms the multi-objective reinforcement learning
(MORL) paradigm. We give an overview on multi-objective optimization
techniques imported in MORL and their theoretical simplified variant with
a single state, namely the multi-objective multi-armed bandits (MOMAB)
paradigm.

1 Introduction

In some practical applications, such as e.g. control applications, there are often
multiple criteria, or objectives, that need to be optimized at the same time.
Real-world applications that motivate the usage of multi-objective reinforcement
learning (MORL) are: 1) the wet clutch from control theory [1], and 2) traffic
light control [2]. A generic and tunable problem instance generator [3] pro-
poses large and challenging multi-objective environments. Another benchmark
with test problems for MORL is proposed in [4]. The main goal of MORL
algorithms is to learn and optimize an action selection in difficult and complex
on-line multi-objective environments by enriching reinforcement learning (RL)
with the intuition and computational efficiency of multi-objective optimization
(MOO) in handing these environments that could be deterministic, stochastic
or adversarial.

In this paper, we are briefing algorithms in the already identified intersect-
ing areas between reinforcement learning and multi-objective optimization. Al-
though they seem very different, both paradigms address decision making prob-
lems with the same goal of optimizing the reward obtained through the be-
haviour of an agent. Reinforcement learning [5] is a well established area of
research within machine learning (ML) that solves sequential decision problems
in an initially unknown environment. Multi-Objective Optimization [6] is consid-
ered here a subfield of multi-criteria decision making (MCDM) concerned with
optimization of more than one objective simultaneously and where a decision
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maker decides which solutions are important and when to show these solutions
to the decision maker. Currently, MOO is seldom used for stochastic optimiza-
tion problems although there are important application areas, like risk analysis,
that could benefit from stochastic MOO algorithms. An overview [7] on the
decision problems involving multi-objective and stochastic optimization for op-
erations research concludes that this combination is very promising although an
unexplored research area.

The paper is organized as follows. Section 2 gives an introduction in rein-
forcement learning. Section 3 presents introductory multi-objective optimization
terms and techniques used in RL. In Section 4, we present recent developments
in the multi-objective reinforcement learning (MORL) paradigm. In Section 5,
we focus on a special simplified case of MORL used for theoretical analysis: the
multi-objective multi-armed bandits (MOMAB) paradigm. Section 6 concludes
the paper.

2 Short introduction in reinforcement learning

Markov decision processes [8] (MDP) are a popular formalism to study decision-
making under uncertainty where the objective is to maximize a cumulative re-
ward value. An MDP is characterized by a set of states and a set of actions.
For each state - action pair there is a probability of entering a next state, i.e. a
transition probability, accompanied by a possible stochastic reward. This pro-
cess is Markovian since the distribution over the next states is independent of
the past through the current state and action. The action-selection mechanism
in an MDP is described by a policy that specifies a probability of selecting an
action in a specific state. The quality of a policy is measured by the expected
discounted sum of future rewards.

Two important techniques to solve MDPs are dynamic programming and
reinforcement learning. Dynamic programming [8] (DP) solves MDPs by break-
ing them down in simpler sub-problems using the Bellman equation [9], which
expresses that the expected value of a state is defined in terms of an immediate
reward and the expected future sum of rewards. Note that DP methods assume
the transition model and reward functions are known.

Reinforcement learning (RL) is an alternative of DP where the transition
and the reward functions are not known apriori. RL solves MDPs by rewarding
good actions and punishing bad actions. The reward is a scalar value that
can be stochastic, i.e. drawn according to a probability distribution. A negative
reward expresses a punishment, and positive values express a reward. Optimizing
actions means trying them out, and evaluating their long term reward and this
might only be apparent after a large number of actions have been taken. RL is
considered a very general learning technique that has been successfully applied
to robot control, games, elevator control, etc.

An important aspect of RL is the exploration / exploitation dilemma: 1) the
agent should try new, probably sub-optimal, combinations between states and
actions with an exploration strategy, and 2) RL is an optimization algorithm
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that needs to return feasible, close to optimal, solutions to a control problem
using an exploitation strategy. Both these strategies are not trivial and actually,
in a realistic environment where the resources are limited, there is a trade-off
between them because an RL algorithm that explores a lot will have little time
left for exploitation and vice-versa.

Q-learning [10] is a popular model-free RL algorithm that incrementally es-
timates Q-values for actions based on rewards and the current Q-value function.
The learner makes a step in the environment from a current state to a future
state using an action while receiving a reward value. The update takes place on
the Q-value of the action in the state in which the action was executed. Under
certain conditions, e.g. the environment is Markovian, and the agent gradually
decreases the learning rate, the system converges to the optimal policy of the
MDP. From the exploration strategies used to select the next action, the ε-greedy
exploration method selects most of the time the best action and with a small
probability another action chosen at random.

Multi-armed bandits [11] (MABs) is a popular mathematical formalism for
sequential decision-making under uncertainty. An agent must choose between
N-arms such that the expected reward over time is maximized. The distribution
of the stochastic pay-off of the different arms is assumed to be unknown to the
agent. A MAB algorithm starts by uniformly exploring the N-arms, and then
gradually focuses on the arm with the best observed performance. A number
of real world applications can be modelled as MABs, like the famous Yahoo
recommending system [12].

3 Short introduction in multi-objective optimization

The goal of MOO is to simultaneously optimize several, and usually conflicting,
objective functions. The solution to a MOO-problem is not a single point, but a
set of Pareto optimal solutions, i.e., solutions which cannot be further improved
in any objective without worsening at least another objective. This set is usually
referred to as the Pareto set. Solving a MOO-problem consists of finding the
set of Pareto optimal solutions that is the set of Pareto optimal policies for
MORL and the set of Pareto optimal arms in MOMABs. The Pareto front
is not necessarily finite and its identification requires specific mechanisms for
efficient storage, exploitation and exploration of solutions. Thus, optimizing in
multi-objective environments is significantly more complex than optimizing in
single objective environments also because of the increasing size of Pareto fronts
for an increasing number of objectives.

Note that we could use different dominance relations to identify the Pareto
front and to explore the MOO environment. The performance of a MOO algo-
rithm could be assessed using the Pareto partial order relation where a solution
is considered better than another solution iff there exists at least one objective
where the first solution is better and for all other objectives is better or equal
than the other solution. To explore the environment, alternative dominance re-
lations might be used like total order relations, i.e. scalarization functions and
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preference based relations.
A general criterion to classify multi-objective approaches considers different

order relationships of the ”goodness” of solutions:
1) Pareto-based ranking methods perform the search directly in the multi-

objective space using the Pareto dominance relation. They are called posterior
methods and their aim is to produce all the Pareto optimal solutions. Pareto-
based ranking is popular in Evolutionary Computation [13] (EC) and it typically
manages sets of solutions. A decision maker selects afterwards her/his preferred
solution.

2) Scalarization functions [14] transform the multi-objective problem into
a single objective problem, by combining the different values of the different
objectives into a scalar using linear or non-linear functions. The advantage of this
approach is that a multi-objective problem is transformed into a single objective
problem that can be solved by a standard optimizer. With this approach, the
decision maker could have little or no preference on the particular Pareto optimal
solution returned. If a decision maker should select afterwards her/his preferred
solution, the disadvantage of this method is that a range of weight vectors needs
to be generated in order to identify the entire Pareto front, and this can be both
time consuming and possibly inaccurate.

3) The a-priori techniques assume that the decision maker has preferences
for a particular region of the Pareto optimal set and uses, for example, a utility
function or a lexicographic order to rank the objectives [15].

4) The interactive methods, used for example in games, permanently interact
with the user in order to select a preferred solution.

4 Multi-objective reinforcement learning paradigm

Multi-objective dynamic programming [16] and multi-objective MDP (MOMDP)
[17] find their roots in the 80s where the immediate reward values are replaced
with reward vectors. In general this leads to multiple optimal policies that are
incomparable, each being optimal with respect to at least one of the criteria. A
variety of techniques from MOO are incorporated into RL to construct efficient
MORL algorithms which can learn all Pareto optimal policies. Multi-objective
RL (MORL) algorithms are usually scalarization-based RL. For an overview of
these methods we refer to [18].

[19] shows that convex Pareto fronts can be identified always with linear
scalarization functions using MOMDPs in continuous environments with two and
three objectives. [20] applies this technique in a multi-agent setting that contin-
uously interacts with the decision making system. [21] extends these techniques
to non-convex Pareto fronts. In [22] and [23], MORL walks on a continuous state
Pareto front using the policy gradient algorithm.

Online MORL algorithms use linear scalarization functions with Q-learning,
where Q-values are extended to Q-vectors to identify the Pareto front of poli-
cies [4]. MORL has different updating rules for the Q-vectors and the selection of
the next action when compared with single objective MDP. For example, reward
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vectors are scalarized and Q-vectors are updated separately in each objective,
and the next action is selected from a list generated with ε-greedy exploration
or the hypervolume based indicator [24]. The advantage of using linear scalar-
ization functions is that it becomes straightforward to show the convergence to
the true Pareto front.

As in MOO, when a set of fixed uniformly spread, linear or non-linear, scalar-
ization functions is used, most probably only a subset of the Pareto front is
identified [25].

An adaptive set of scalarization functions [26, 27] identifies a larger number
of Pareto optimal solutions [28], and thus this MORL is efficient in two and three
objective environments. The correlation between two objectives is exploited in
[29]. In [30], multiple copies of a single objective RL policy are used to solve a
given problem.

The hypervolume unary indicator [31] commonly assesses the performance of
MOO algorithms, and is recently used to guide the search as another transforma-
tion of MOO into a single objective problem [32]. The advantage of hypervolume-
based search over scalarization functions is that there is no need to search for
a set of functions to generate the Pareto front. The disadvantage is that the
decision maker has no control over the output Pareto optimal solutions. A
successful MORL algorithm uses the hypervolume indicator in the exploration
mechanism [24]. In the dynamics of hypervolume-based MORL algorithm there
were noticed the same downside as for MOO algorithms that use the hypervol-
ume indicator [33]. Hypervolume-based search is also used by a Monte Carlo
tree search method in [34].

In order to speed up the learning process in multi-objective environments,
model-based algorithms have been designed. Intuitively, keeping a model should
help, because whenever some information is gained from an exploration move,
a model-based algorithm can propagate that information throughout the search
space, and thus less exploration is needed. However, as pointed out in [35], this is
not always the case since the extra information should be adequately stored and
used. Most multi-objective DP approaches construct a list to keep track of the
Pareto optimal value functions. In MOMDPs, the value function has different
cumulative reward components in each objective for a policy. The set of Pareto
Q-value functions in each state and the set of Q-values are stored in order to work
on this set based multi-objective DP [36, 37]. Compared with single objective
DP, the maxim operator is replaced with a Pareto optimal operator for sets.

This approach has severe computational problems for dynamical environ-
ments, where the reward vectors change over time. Then, the environment
changes over time, and model-based RL might not exit from the learning loops,
even for small, but dynamical, environments. [38] proposes a bootstrapping
rule for MOMDPs similar with the bootstrapping rule from [8] to ensure con-
vergence of Q-vectors even when the underlying environment is stochastic. [39]
uses Pareto local search for optimizing policies in MOMDPs for planning.

Multi-criteria RL [15] uses preference based dominance relations to order two
criteria. [40],[41] propose preference based RL algorithms.
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5 Multi-objective multi-armed bandits paradigm

A variety of techniques from MOO are adapted to MABs with reward vec-
tors for an efficient trade-off between exploration / exploitation in difficult (i.e.
complex and large) multi-objective stochastic problems. The exploration (the
search for new useful solutions) versus exploitation (the use and propagation of
such solutions) trade-off is an attribute of successful adaptation in both MABs
and multi-objective optimization for evolutionary computation. In EC, the ex-
ploration implies the evaluation of new solutions that could have low fitness
values and the exploitation means the usage of already known good solutions.
In MOMABs, there is also an exploration / exploration trade-off of the Pareto
front. When the set of Pareto optimal solutions in too large, we need to exploit
a representative set of policies, whereas we consider an unbiased exploration of
policies in this representative Pareto set.

Theoretical properties are important in designing MOMABs since they are
considered simplified MORL algorithms with lower and upper bounds on per-
formance measures. In MOMABs, the performance measures are still subject
of research and include: 1) regret metrics that measure the total loss of using
suboptimal arms, 2) variance in usage of Pareto optimal arms, and 3) estimated
sample complexity or the estimated number of arm pulls to bound the probabil-
ity of erroneously removing one of the best arms. Most MAB algorithms have
one of two goals: 1) to optimize the performance, e.g. minimize the total regret
resulting from how many times a suboptimal arm is used instead of an optimal
arm, 2) to identify the best arm by successively deleting suboptimal arms when
their lower quality bound is assigned with enough confidence.

A mechanism to minimize the regret is to identify the set of Pareto optimal
arms with the highest expected reward (i.e. the Pareto front). To calculate
upper confidence bounds on expected cumulative regret, we have noticed that
the Hoeffding inequality [42] and union bound are extensively used in stochastic
MABs. Thus, MOMABs’ upper bounds use the same Hoeffding inequality that
now applies the union bound over the number of dimensions and, for some
algorithms only, over the number of Pareto optimal arms.

The Pareto upper confidence bound algorithm (Pareto UCB1) [43] is an
infinite horizon MOMAB that extends a very popular stochastic MAB algorithm
named UCB1 (upper confidence bound). Pareto UCB1 pulls each iteration one of
the Pareto optimal arms according to an index composed of the arm’s estimated
mean and an exploration term proportional with the number of times the arm
was selected. Similarly with single objective UCB, a method to ameliorate the
performance of Pareto UCB1 is to increase the number of times each Pareto
optimal arm is pulled [44, 45, 46]. UCB is a very general technique that could
be applied on arms with any distribution. Naturally, when the distribution of
the arms (e.g. Bernoulli) is also integrated in the algorithm, performance of the
algorithm is improved [47, 48]. In [49], the Pareto front of continuous arms is
identified using similar algorithms as in [50]. The scalarized upper confidence
bound algorithm [43] extends the UCB1 to multi-objective optimization using a
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fixed set of linear and non-linear scalarization functions.
An alternative goal is to identify the Pareto front or to select a represen-

tative set of arms with a bounded probability of error. Scalarized Pareto front
identification [51] with the homologue MAB uses a fixed set of scalarization func-
tions. A common approach in multi-objective optimization selects a number of
weight vectors that are uniform randomly spread in the weight space. How-
ever, the performance of the algorithm heavily depends on the optimal solutions
identified by the weight vectors and these solutions could be non-uniformly dis-
tributed. Techniques from evolutionary computation are used to generate new
scalarization functions to identify the entire Pareto front [52]. Topological ap-
proaches [53] decompose any Pareto front in a hierarchy of convex shapes that
can be identified with linear scalarization.

The knowledge gradient policy [54] is an on-line bandit-style learning method
in a reinforcement learning setting where the rewards are updated using Bayesian
rules. Multi-objective knowledge gradient algorithms use reward vectors and
MOO in a multi-armed bandit setting [55, 56, 57].

6 Discussion

We gave an overview of current multi-objective optimization techniques used in
reinforcement learning using reward vectors. Note that MORL follows closely
the latest research in MOO to generate algorithms with an efficient exploration
/ exploitation trade-off. Although a lot of work has been done to develop this
research field, there are still fundamental questions that cannot be immediately
answered using knowledge from either RL or MOO. For example, what is a good
(unified) performance measure for these algorithms? How will the analytical
performance of MORL algorithms be affected by the inclusion of MOO tech-
niques? There is also a need of a set of real-world applications that highlights
the strengths and the weaknesses of these algorithms.

To conclude, reinforcement learning with reward vectors is a novel and promis-
ing research area with an initial slow development because of severe computa-
tional problems, which is extensively developed in the last years because of the
advanced MOO techniques they incorporate. Given the rapid increase in com-
putational power of computer systems, we predict that MORL will follow the
popularity trend of RL and will be increasingly applied in applications like robot
control and the internet of things.
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