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Abstract. Dimensionality reduction is an unsupervised task that allows
high-dimensional data to be processed or visualised in lower-dimensional
spaces. This tutorial reviews the basic principles of dimensionality reduc-
tion and discusses some of the approaches that were published over the
past years from the perspective of their application to big data. The tu-
torial ends with a short review of papers about dimensionality reduction
in these proceedings, as well as some perspectives for the near future.

1 Introduction

Dimensionality reduction (DR) [1, 2] aims at representing high-dimensional data
in low-dimensional spaces, while preserving important structural properties, like
for example (dis)similarities or neighbourhood relationships. The vast majority
of DR methods work in a unsupervised way: they process data features with-
out taking into account additional information like class labels, which are then
sometimes used to assess DR quality. Dimensionality reduction can be used for
different purpose, ranging from exploratory data analysis (visual inspection) to
data compression before subsequent processing. In the latter case, DR can be
seen as a way to defeat the so-called curse of dimensionality, which makes many
complex analysis tasks like regression or classification much more difficult in
high-dimensional spaces than in low-dimensional ones.

High dimensionality is not the only issue that analysts have to face in the
current era of data plethora. Data collection and storage becomes easier and
cheaper every day. Processing large amounts of data raises many issues, in
terms of algorithmic complexity (time and memory consumption), workload dis-
tribution (vectorised, parallel, or distributed architectures), and efficient visual
presentation of the results. Politics and media have coined the term “Big Data”
to refer to these problems and the effort to alleviate them. In a recent interview
for the INNS Big Data conference, though, Jurgen Schmidhüber said: “At any
given moment, big data is more data than most people can conveniently store”.
Thereby he pointed out nicely that big data was, is, and will always remain an
open question, although it only became popular very recently.

This tutorial revisits past and recent history of DR and briefly shows how
the issue of large data sets has been dealt with. Section 2 introduces the var-
ious principles of DR and weaves connections with the closely related domain
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of information visualisation (InfoVis). Section 3 comes back on approaches and
methods that were published in the recent and more distant past, with a special
focus on how they tried to deal with big data. Section 4 briefly presents the con-
tributions to DR in these proceedings. Finally, Section 5 sketches the expected
forthcoming developments of DR.

2 Principles

In general, DR attempts to represent high dimensional data with low-dimensional
counterparts while preserving as much “information” as possible. Depending on
the user, data at hand, and the problem to solve, various aspects may be relevant.
Therefore, DR is inherently ill-posed and a many methods have been proposed,
differing in the data properties they preserve, the mathematical formulation
(parametric or non-parametric, discriminative or generative), the optimisation
scheme, and so on. First steps have been taken to unify a vast majority of
DR techniques in a general framework [3] by summarizing a general principle.
Let us assume high-dimensional data points Ξ = {ξi ∈ IRD|i = 1 . . . N} have
low-dimensional counterparts xi in the embedding space IRd, with d ∈ {2, 3}
for visualisation. Generally the following building blocks are used: the charac-
teristics derived from the original data set Ξ for every data point charΞ, corre-
sponding characteristics of their projection charX , and an error measure between
them. Therefore a cost function is formulated that is minimised during projec-
tion: costs :=

∑
xi∈X error(charΞ, charX ), possibly constrained to guarantee the

uniqueness or invariance of the result.
Models in DR can also be split in generative and discriminative [4]. These

ideas can be simply summarised by feature construction versus feature selection,
inspired by Bayesian or frequentist philosophy [5, 6]. Discriminative dimension
reduction usually consists in a discretised representation of the input space. Su-
pervised methods aim to extract features from the data most descriptive for a
certain task (regression, classification, etc.) and will not be dealt with in this
tutorial. Early unsupervised techniques include principal component analysis
(PCA) [7], multidimensional scaling (MDS) [8, 9] and the self organizing map
(SOM) [10]. The latter abstracts a neural network with lateral connections,
modeled with a neighbourhood function to preserve the topological properties
of the data. Whereas discriminative learning provide models only for the tar-
get variables conditioned on the observed data generative learning provide a full
probabilistic model on all variables. Hence generative models can be used to sim-
ulate or generate values of any variable in its model to find a lower-dimensional
parameterisation of the dataset. The model selection procedure usually involves
the maximisation of the log-likelihood of the model for example by expectation
maximisation (EM). Discriminative models often have an equivalent Bayesian
formulation, like for example SOM has generative topographic mapping (GTM)
[11], and are seen as complementary or different views of the same procedure.

Many traditional DR techniques are parametric with a functional form of the
mapping that is explicit and fixed a priori: fW : IRD → IRd, ξ → x = fW (ξ)
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and function parameters W are optimised during DR. This approach has several
benefits: (1) out-of-sample extensions are immediate and require only constant
time depending on the chosen form of the mapping; (2) inverse mappings may
be possible (for example locally linear function can be inverted using the pseudo-
inverse); (3) an implicit regularisation takes place depending on the form of the
mapping function if only a few parameters need to be determined; and (4) usually
only a few data points are necessary to determine the mapping parameters, which
generalise to new points. Therefore, a representative subset of the full data is
sufficient for training, which increases the speed and feasibility of computation
for very large data sets and the investigation of the generalisation abilities with
respect to new points is possible.

On the other hand, many modern techniques are non-parametric, which
means that the coordinates of single point projections ξi → xi are optimised
directly. They have the advantage, that they are not confined to a restricted
functional form and therefore highly non-linear and complex embeddings are
possible. Spectral DR methods [12] rely on the spectrum of the neighbourhood
graph as data characteristics and preserve important properties of it. In gen-
eral, the mathematical objective is formulated to exhibit a unique algebraic so-
lution and therefore these methods often base on very simple affine functions like
Gaussians. Hence, they may show inferior results for boundaries, disconnected
manifolds or holes. Using more complex affinities, such as geodesic distance or
local neighbourhoods, can avoid those problems at the price of higher computa-
tional costs and the existence of local optima. Usually numerical optimisation
is required, but due to the greater complexity their visualisation properties may
be superior. Due to the mapping of a given finite set of points additional effort
is necessary to include new points in the mapping. Naively out-of-sample exten-
sion can be provided if the novel points are mapped by optimizing the underlying
cost function while keeping the prior data fixed. This way the new coordinates
are still controlled by all data points and the computational costs depend on the
size of the training set, but the generalisation ability is not clear. Therefore, a
principled framework to extend non-parametric methods with explicit mapping
function to combine the strength of both formulations has been shown in [3].

Interactive data visualisation has gained a lot of interest since it has great
potential to engage and inform large audiences, especially since the availability of
the world wide web. Therefore, considerable effort has been made to identify, ex-
press, and understand the complex concepts of human-machine communication,
for example Norman’s execution-evaluation cycle with its seven states of action
[13]. This led to the establishment of common interaction techniques in InfoVis
like, for example, brushing, zooming & panning, and dynamic queries. Data vi-
sualisation and user interaction have been a strong focus in InfoVis community
and attempts are taken to combine it with the strong mathematical formula-
tions and machine learning principles known from the dimensionality reduction
field. Recent methods interactively select a subset of the potentially most inter-
esting variables, employing various methods for dimensionality reduction under
changes of the metric driven by the user [14, 15].

489

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



3 Approaches

Early DR methods were linear transformations of data, like principal component
analysis (PCA) [7] and classical metric multidimensional scaling (MDS) [8, 9].
These two methods are dual, the former working with the eigenvalue decompo-
sition (EVD) of the sample D-by-D covariance matrix, the latter with the EVD
of the n-by-n Gram matrix of dot products. On the other hand, PCA and MDS
totally differ on key aspects: PCA is parametric, MDS is not. Also, depending
on whether D � N or D � N , PCA or MDS will scale more favourably in
terms of memory and time consumption.

Many nonlinear variants of MDS [8, 9, 16, 17, 18] rely on a stress function
that quantifies distance preservation (instead of dot products in classical metric
MDS). Stress is minimised with generic optimisation techniques (instead of an
EVD). The stress formulation make these methods nonparametric and not suited
for large N . Some publications have tried to address this issue by reducing first
the data set size, for instance with vector quantisation (VQ) [19]. The drawback
is naturally that not all data points are represented, unless an efficient out-of-
sample extension is available too (see for instance [20, 21]). Such a strategy
relying on VQ was in the same spirit as the very popular auto-organising maps
[10], which elegantly combined vector quantisation and DR/visualisation.

A related approach, at least in its biological inspiration, is DR with auto-
encoders (AEs), namely, feed-forward artificial neural networks working in auto-
association mode (outputs must match inputs) [22, 23, 24, 25]. AEs are deep
networks and consist of at least three hidden layers, with the middle one in-
cluding d neurons. Hence, DR occurs in the first half of the network, while the
second reconstruct data. Being parametric, AEs also have a controllable model
complexity, scale rather well for both D and N , and have a straightforward out-
of-sample extension. The principle of AEs is much more elegant than that of
the hybrid approaches in [20, 21]. However, early AEs could only rely on back-
propagation and suffered thus from inefficient learning, until the development of
specific training techniques [25].

Weighted distance preservation [16, 17, 18] in a stress function is not to only
way to generalise classical metric MDS to nonlinear DR. A preliminary nonlinear
transformation can send data to a feature space, where classical MDS can be
carried out with the same guarantee of identifying a global optimum thanks to
the EVD. Kernel PCA [26] implements this principle with Mercer kernels, which
transpose dot products from the data space to some (unknown) feature space
[27, 28]. Many other DR methods have followed this pioneering idea and are now
known as spectral DR [12]. For instance, Isomap [29] and maximum variance
unfolding (MVU) [30] rely on fixed or adaptive geodesic distances (instead of
Euclidean ones) to induce the feature space. Laplacian eigenmaps (LE) [31] and
locally linear embedding (LLE) [32] harness graph theory and indirectly involve
random walks and commute time distance like in spectral clustering [33, 34].
Isomap and MVU entail Gram matrices and do not scale very well with N .
In contrast, LE and LLE involve only adjacency or affinity matrices that are
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advantageously sparse. Like classical MDS it derives from, spectral DR is non-
parametric and requires out-of-sample extensions to process large data sets [35].

The latest and most promising DR methods are variants of stochastic neigh-
bour embedding (SNE) [36], like t-SNE [37], NeRV [38], and Jensen-Shannon
embedding [39]. In spirit, these methods are close to stress-based MDS, except
that they replace distances with specific pairwise similarities/affinities that are
quite robust against distance concentration [40, 41]. If these methods are very
successful in terms of DR quality [37, 38, 39], especially for very high-dimensional
data, they do not scale well for large N , since they involves pairwise similarities.
An early but rather inefficient workaround [37] has relied on L� N landmarks,
which are randomly picked in the data sets. Instead of all possible pairs of
data, the method considers only data-landmarks pairs. In contrast, the latest
developments borrow ideas from astronomy and mechanics, domains where large
N -body problems are solved approximately. Data structures like quadtrees [42]
or fast multipole methods [43] allow reducing the time complexity from O(N2)
to O(N log(N)) or even O(N). These accelerated methods can process tens of
thousands of data in minutes, but the quality of their results still need further
quantitative assessment.

4 Contributions in these ESANN proceedings

The special session about unsupervised DR includes six contributions.
Payen et al. and Delion et al. propose two applicative papers involving recent

nonlinear DR methods. The former investigates efficient clustering for spatial
bird population analysis along the Loire river. They analyse the spatio-temporal
distribution of bird communities to study river zonation by detecting ecological
discontinuities due to geomorphology of landscapes using quantitative evaluation
based on neighbourhood ranking. The latter contribution compares nonlinear
DR techniques for high-dimensional Near InfraRed Spectroscopy (NIRS) data
for vineyard soil characterisation. They analyse double variability, namely the
inter-specific due to similar sites and the intra-specific with respect to the sample,
using fractional metrics.

Gianniotis et al. present their approach to visualisation of time series data.
They employ an echo state network (ESN) with fixed reservoir to capture the
long-term latent dynamics and convert the time series into vector representation
by training a linear readout vector. Visualisation is then constructed using the
bottleneck activations of an AE. The core of their contribution is the definition
of an objective function that quantifies the reconstruction error in a meaningful
way, namely, how well the reconstructed readout vector can reproduce the time
series when plugged into the same fixed ESN reservoir.

Aláız et al. propose a measure of neighbourhood preservation to fix parame-
ters for diffusion maps without requiring problem-specific knowledge. It assumes
that a certain diffusion metric can approximate the metric of the low-dimensional
Riemannian manifold. They show next that the list of varying parameters can be
chosen depending on a neighbourhood preservations measure and that a linear
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relation binds the fitness criteria and the model accuracy.
Blöbaum’s et al. contribution investigates unsupervised DR for transfer learn-

ing, which establish a link of source (training) and target (test) domain by rep-
resenting data in a common latent space. Transfer learning is currently a hot
topic in the context of big data, distributed systems and life-long learning, where
source and target data might follow a different underlying distribution or is con-
tained in a different spaces. A shared distribution of source and target data
in the latent space can be enforced by EM optimisation of the log-likelihood
and employ modern non-linear DR methods as t-SNE and kernel embedding.
Transfer learning quality is evaluated by training a linear SVM on the projected
source data, classify the projected target data, and compare their labels.

Finally, Peluffo-Ordóñez et al. propose an interactive data visualisation based
on a geometrical homotopy, in order to transpose concepts like interaction and
controllability from InfoVis to DR. They define a bi-parametric mixture of kernel
matrices representing different spectral DR methods, such that non-experts can
select or combine methods by simply picking points in a polygonal surface.

5 Perspectives for the near future

After more than a century of research, DR is reaching maturity. Starting from
early linear methods like PCA and MDS, the field has known several (r)evolution.
First, the extension from linear projection to nonlinear mapping, even with clas-
sical spectral optimisation techniques. Next, biological influences (SOMs, AEs)
have initiated the moves towards data visualisation (InfoVis) and scalability.
Neighbourhood preservation [36, 37, 38, 39] has then led to methods able to deal
with very high dimensions, as well as new quality criteria [38, 44]. Tightening
the connection with InfoVis and improving scalability without degrading quality
are now the necessary steps to face the big data era and make DR applicable in
real situations.
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