
I see you: On Neural Networks for Indoor
Geolocation

Johannes Pohl and Andreas Noack

University of Applied Sciences Stralsund, Germany

Abstract. We propose a new passive system for indoor localization of
mobile nodes. After the setup, our system only relies on arbitrary wire-
less communication from the nodes, whereby neither the mobile nodes
nor the communication needs to be under our control. The presented
system is composed of three Artificial Neural Networks (ANN) using a ra-
diomap approach and the Received Signal Strength (RSS) for localization.
A Probabilistic Neural Network (PNN) decides between two Generalized
Regression Neural Networks (GRNN) that process the actual RSS mea-
surement. In practical experiments we achieve a mean location error of
0.58m which is 22.64% better than a single GRNN approach in our setup.
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1 Introduction

Precise localization of mobile devices is an important goal for location based
services. Many companies, e. g. Google and Apple, already provide solutions
for location based services, both for indoor and outdoor localization. Outdoor
localization is commonly realized with GPS, the de facto standard technology
for localization. However, since GPS signals are reflected and shadowed by walls
it can not be used in indoor scenarios.

IEEE 802.11 wireless lan (WLAN), Zigbee or Bluetooth (e. g. Apple iBeacon)
are alternatives to GPS, when locating a mobile target inside a building. Due
to the high availability of WLAN in many buildings, a WLAN based positioning
system can be established with relatively low costs, using existing communication
infrastructure. Exploiting parameters of WLAN signals, such as Received Signal
Strength (RSS) or Time of Arrival (ToA), allows estimating the position of a
mobile target.

Indoor localization is mostly done with a fingerprinting-based approach. A
pioneer work in locating a mobile device using RSS-Fingerprints is Microsoft
RADAR [1]. The fingerprints are stored in a database called radiomap. RADAR
achieves an accuracy of 2m to 3m using empirical fingerprints and k-nearest-
neighbor-algorithm (KNN) to determine the location.

Battiti, Le, and Villani [2] use a neural network instead of KNN for location-
determination. Neural networks are well-suited for localization, since you can
consider the location-problem as a function approximation. They report an av-
erage location error of 3m, which can be reduced to 1.5m by increasing the
number of training samples. The applied neural network was a multilayer per-
ceptron (MLP) using one-step secant training method.
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Apart from MLP a second network architecture is often used for localization.
This is the Radial Basis Function Network (RBFN) and the Generalized Regres-
sion Neural Network (GRNN) [7], which is a special RBFN. Several authors
studied whether MLP or RBFN is better suited for localization. Comparisons
regarding the achieved accuracy with MLP and GRNN are made in [11, 6, 9].
In most cases GRNN performs slightly better than the MLP. For example Out-
emzabet and Nerguizian [6] report a median location error of 3.56m and 2.45m
for the MLP and GRNN, respectively.

To the best of our knowledge, all relevant studies using RBFN (GRNN)
for indoor-localization rely on MATLABs Neural Network Toolbox [3]. In this
paper we propose an own implementation of GRNN with several optimizations
for indoor localization that outperforms all previous research results in terms of
accuracy.

According to Specht [7] RBFNs are superior to GRNNs when training data
is presumed to be accurate i.e. there is very low noise. A RBFN calculates
the weights to perfectly fit the training data, which is pointless for very noisy
training sets. Depending on the level of noise RBFN or GRNN will achieve
better results. Practical measurements (section 2) were performed to analyze
which network is best suited for indoor localization with IEEE 802.11 WLAN.

The organization of the paper is as follows: Section 2 describes our experi-
ments for determining the ANN with the highest location accuracy. Section 3
presents a system with higher accuracy than the previous works and section 4
concludes the paper.

2 Practical geolocation results

In this section we analyze the practical relevance of ANNs for geolocation by tak-
ing practical measurements into account. Our test setup consists of an Atheros
AR9287 based Access Point using hostapd. The AP is placed in the center of
eight monitor stations that use packet sniffers to extract the RSS from the IEEE
802.11g WLAN (2.4GHz) signals. Our measurement setup is shown in fig. 1
whereM1 toM8 identify the monitor stations and the black dots the calibration
points used for radiomap creation.
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Fig. 1: Measurement setup
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In order to keep hardware dependent impact on measurements as low as
possible, all monitor stations use Atheros AR9271 wireless networks adapters
to collect RSS values. In the online phase, RSS information were gained from
observing IEEE 802.11 ACK frames that occur whenever a data frame arrives
at the target. For the purpose of reducing the experiments duration, we induced
the target to send ACK frames in an interval of 1ms until 1000 RSS values were
collected. A Google Nexus 4 with Android 4.4.2 was used as mobile target.

2.1 Practical measurements

Three neural networks (GRNN, RBFN and GRBFN) were examined for the lo-
calization of the mobile target. The three networks were implemented in Python
using the parameters presented in table 1.

Table 1: Parameters of the three examined Neural Networks
Network Parameters
GRNN • Radius σG = 8.59

• 12 hidden neurons
RBFN • Radius σR = 18.99

• 12 hidden neurons
GRBFN • Radiusvector σ = (18.99, . . . , 18.98) with 8 elements

• 8 hidden neurons
• 20 training iterations for σ
• 20 training iterations for output weights

For determining the radius σ of a GRNN/RBFN, Haykin [4, p. 299] proposes
the heuristic σest = dmax

2·N , where dmax is the maximum (euclidean) distance of
training vectors and N , the number of training samples. In order to achieve
more precise results, this formula is modified to take the number of monitor
stations into account. The radius σG of the GRNN is calculated by

σG = 6
√
m · σest =

dmax · 6
√
m

2 ·N
(1)

with m specifying the number of monitor stations i.e. the dimension of the input
vectors. For the radius σR of the RBFN the heuristic

σR =
√
m · σest =

dmax ·
√
m

2 ·N
(2)

is used. Both formulas σG and σR were determined and proofed heuristically.
The GRBFN vector σ is based on σR.

2.2 Analysis of the results

The measurement results (table 2) were processed at 48 locations and show that
the GRNN performs better than RBFN and GRBFN algorithms in terms of
mean location error (error defined by euclidean distance) and median error.
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In terms of the 75% percentage CDF (Cumulative Distribution Function) the
RBFN performs slighty better than the GRNN algorithm. However, the GRNN
achieved best results in our test setup which can also be verified with the CDF
curve of the location error (fig. 3a).

Since the GRNN algorithm outperforms both other algorithms, we use it as
basis for further optimizations in the next section.

3 Optimizing the generalized regression neural network

In this section we propose a locating system consisting of two Generalized Re-
gression Neural Networks (GRNN) that further improves the previous results.

To enhance the location accuracy the function approximation problem of f
was split into an interpolation and extrapolation problem. Two GRNNs with dif-
ferent radii were used, performing interpolation and extrapolation, respectively.
The first network, GRNN0, estimates all locations inside the radiomap i.e. it
performs function interpolation. The second network, GRNN1, estimates all
locations outside the radiomap, i.e. it performs a function extrapolation.

In order to use this approach, an input vector rss of RSS values must be
assigned to either θ0 (inside radiomap) or θ1 (outside radiomap). This classifi-
cation was performed by a Probabilistic Neural Network.

Probabilistic Neural Networks (PNN) [8] are well suited for classification as
they are robust to noise [5] and get along with a small amount of training data
[10]. For these reasons PNNs are attractive for the decision between inter- and
extrapolation in our localization system.

We employ a PNN with σP = 3.10 which was heuristically found. The PNN,
trained with the radiomap and ten additional locations, classifies 47/48 possible
locations correctly. A graphical illustration of our complete system and its radii
is shown in fig. 2.

Our proposed system takes the same measurement data as used in the pre-
vious setup in section 2.1.
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Fig. 2: Our proposed system

Results (fig. 3b and table 2) show that our system beats the GRNN in terms
of mean location error with a system gain of 22.64%.
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Fig. 3: CDF of location estimate errors

Table 2: Positioning Errors (m)
Technique Mean Median CDF (75%)
RBFN 0.8936 0.7127 1.0611
GRBFN 0.9511 0.8089 1.1944
GRNN 0.7557 0.5704 1.1051
Our System 0.5845 0.5146 0.7928
System Gain resp. GRNN 22.6455% 9.7694% 28.2632%

4 Conclusion

We proposed a new system for indoor localization. The system consists of two
GRNNs, splitting the function approximation problem into an interpolation and
extrapolation problem and one PNN for the decision between both GRNNs. We
decided to go with the GRNN as primitive, because it outperforms RBFN and
GRBFN in practical measurements (section 2) in terms of location accuracy.

Our system achieves a mean location error of 0.58m which is an enhancement
of 22.64% compared to the single GRNN approach. Compared to other research
results for indoor localization with neural networks, our system increases the
accuracy by even 1m to 2m. It should be noted, that our setup was made
under ideal conditions, while measurements in related work were taken in office
buildings. We expect, that our system will perform less accurate in similar
environments because of obstacles (e. g. walls) and moving persons.

Our system creates two classes (inside and outside the radiomap). In a more
general approach you could use more classes with one GRNN assigned to each
class. First tests with four classes resulted in an accuracy of 0.66m. This is
still better than the single GRNN approach but slighty worse than the accuracy
achieved by our system with two classes. Future work has to focus on finding
reasonable numbers of classes and the geometrical shape of the classes (e. g.

171

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



rectangular, triangular). The choice of GRNN as our main system component
strongly depends on noise of the measurement data. If there is no noise the
RBFN outperforms the GRNN by 0.3m in terms of accuracy which can be
learned from a simulation. Future work is the determination of how small the
standard deviation of the noise must be, so that a RBFN becomes more attractive
than a GRNN. Since you can lower the effect of noise by taking the mean of more
measurements at one location, this is not only a theoretical question.

The accuracy of our system depends on the chosen radii for both GRNNs.
Future work will reveal, whether our heuristics for the radii (eqs. (1) and (2)) can
be applied to other setups. Another optimization would be to exploit different
signal parameters besides RSS, e.g. Time of Arrival.
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