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Abstract. Clustering as an unsupervised technique is predominantly
used in unweighted settings. In this paper, we present an efficient version
of a robust clustering algorithm for sparse educational data that takes
the weights, aligning a sample with the corresponding population, into
account. The algorithm is utilized to divide the Finnish student popula-
tion of PISA 2012 (the latest data from the Programme for International
Student Assessment) into groups, according to their attitudes and per-
ceptions towards mathematics, for which one third of the data is missing.
Furthermore, necessary modifications of three cluster indices to reveal an
appropriate number of groups are proposed and demonstrated.

1 Introduction

The application of clustering in a weighted context is a relatively unresearched
topic [1]. PISA (Programme for International Student Assessment) is a world-
wide study that triannually assesses proficiency of 15-year-old students from
different countries and economies in the three domains, reading, mathematics,
and science. Besides the reporting of student performances, PISA is also one
of the largest public databases1 in which students’ demographic and contextual
data, such as their attitudes and behaviors towards education related topics, is
collected and stored.

PISA data are an important example of a large data set that includes weights.
In general, weighting is a technique in survey research to align the sample to
more accurately represent the true population. Namely, only a fraction of stu-
dents from each country take part in the PISA assessment but, when taking the
weights into account, they should be representative for the whole population.
For example, the Finnish sample data of the latest PISA assessment consists
of 8829 students whose analysis results, when multiplied with the respective
weights, represent the whole 60047 15-year-old student population of the coun-
try. As can be seen from Fig. 1, in which the studentwise weights are depicted,
the minimal weight in the Finnish national subset of PISA is 1, i.e. each students
represents at least him/herself, while the maximal weight is more than 54.

A further important characteristic of PISA data is the large number of miss-
ing values. Because PISA uses a rotated design [2] and some students are not
administered certain questions, the majority of the missing data in PISA is
missing by design, which can be seen as a special case of missing completely
at random [3, 4]. Altogether, there are 634 raw variables in the PISA student
questionnaire data set of the latest assessment. However, a subset of 15 derived

1PISA data can be downloaded from http://www.oecd.org/pisa/pisaproducts/.
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Fig. 1: Individual weights (left) and their discrete distribution (right) in Finnish
2012 PISA data.

variables, the so-called PISA scale indices2, readily describe students’ attitudes
and perceptions, e.g., explaining the performance in mathematics [2, 5]. Each
scale index is a compound variable and constructed using the students’ answers
to certain background questions. Nevertheless, mainly because of the rotated
design, 33.24% of these scale indices are not available.

In [5] we utilized a robust clustering algorithm to the Finnish sample of PISA
2012 scale indices, which revealed very gender-specific contrasts in the different
clusters. For the interpretation of the clustering result, we employed the weights
to summarize the cluster prototypes on the population level. However, according
to the PISA data analysis manual [6], one should always, particularly when over-
or under-sampling has taken place, include weights at each stage of the analysis.

Therefore, the research questions of this paper are as follows: (i) how to effi-
ciently cluster sparse student data on the population level, i.e., how the weights
in the sample should be incorporated in the robust clustering algorithm and (ii)
how much the two clustering results with and without weights (sample division
vs. population division) differ from each other? Both questions are relevant for
the Finnish subset of PISA data because immigrants as well as students from
Swedish-speaking schools were deliberately over-sampled in the latest assess-
ment.

2 Weighted robust clustering of sparse data

In general, partitioning-based clustering algorithms are composed of an initial-
ization followed by the iterations of the two basic steps, where each observation
is first assigned to its closest prototype and, then, each prototype is updated
based on the assigned subset of data. As pointed out in [5], sparse data sets can
be reliably clustered by utilizing the so-called k-spatialmedians [7] algorithm.
Compared to k-means, the k-spatialmedians uses the spatial median to estimate
the prototypes, which is statistically robust and can handle large amount of
contamination (noise and missing values) in data.

However, because of the local search character of the partitioning-based clus-
tering algorithms, their result depends on the initialization. For a sparse data set

2These scale indices are explicitly listed in [5].
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with missing values, a proper initialization should posses, at least, two desired
properties: it should reflect the subset of data with full observations, because
inevitably missing values decrease reliability of the cluster allocations. Further-
more, the initial prototypes should be full, i.e., without missing values, because
the cluster assignment and recomputation, e.g., as in [5], assumes this through-
out the whole iterative procedure. Lately the k-means++ algorithm [8], where
the random initialization is based on using a density function favoring distinct
prototypes, has become popular.

Therefore, our general procedure to cluster the sparse data on the population-
level is as follows. First of all, the subset of data that has no missing values is
clustered using k-means++. Then, the robust clustering algorithm is applied
for the whole sparse data by utilizing the obtained prototypes as initialization.
Altogether, the final clustering result is statistically robust with respect to degra-
dations in data, probably with full prototypes (especially when a small number
of clusters is created from a large data set), and reflecting the spherical and
possibly already separated shape of the full data subset.

The precise form of the general clustering criterion to be minimized (locally)
by the iterative reallocation algorithm, with weights and missing values, reads
as follows:

J ({ck}Kk=1) =

K∑

k=1

∑

i∈Ik

wi‖Pi(ck − xi)‖p2, (1)

where Ik denotes the indices of data assigned to the kth cluster and Pi’s define
the sparsity pattern (i.e., indicate available variables) observationwise:

(Pi)j =

{
1, if (xi)j exists,

0, otherwise.

In the k-spatialmedians algorithm for p = 1, the cluster prototypes are computed
using a modifed SOR (Sequential Overrelaxation) algorithm [7], where weights
are taken into account in the updates. Furthermore, in order the align the k-
means-type initialization with p = 2 in (1) to the actual case p = 1, we propose
to use {√wi}’s as weights in k-means++ because, simply, α ‖Pi(ck − xi)‖p2 =
( p
√
α ‖Pi(ck − xi)‖2)p , for α > 0.
To this end, to determine a single result of the partitioning-based weighted

clustering procedure, one also needs to estimate the number of clusters K. For
this purpose, we used three modified internal cluster validation indices, namely
the Ray-Turi [9], the Davies-Bouldin [10], and the Davies-Bouldin� [10]. Essen-
tially, we included the weights in the computations of the clusterwise scatter
matrices, used the final value of (1) as the clustering error, and computed dis-
tances between the prototypes by using the Euclidean norm.

3 Experimental results

The tests concentrate on analyzing the use of weights in the initial partition
utilizing k-means++, followed by the actual weighted k-spatialmedians. Namely,
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Fig. 2: Cluster indices for sparse data scaled into range [0, 1].

one can use/omit the weights in i) the initialization of k-means++ and ii) the
iterative reallocations of k-means++, which creates three possible algorithmic
scenarios. First of all, all of these possibilities were applied to assess the number
of clusters using the modified cluster indices. The result is given in Fig. 2
where the averages of 30 runs (ten for each variant for each k) is depicted.
One concludes that all three cluster indices suggest that, for the Finnish 2012
population data, four clusters is an appropriate choice3. This is the same number
that was obtained for the Finnish sample data without weighting (see [5]).

Next we fix k = 4, i.e., test the speed (number of iterations) and quality
of the three algorithmic combinations for four clusters. The results with 10
repeated test runs are given in Table 1, together with the average of the ten
repetitions in the last row. We report the number of iterations needed in the
initialization (i.e. within k-means++), the number of iterations needed in the
actual k-spatialmedians clustering with the whole sparse data, and also the final
quality of the clustering result (i.e., the clustering error).

All three main columns of Table 1 show that including the weights in k-
means++ for complete data before k-spatialmedians improves the performance
of the latter as less iterations are needed. Similarly, to include square-rooted
weights4 in the initialization of k-means++ improves the performance of the
whole initial procedure (see the last two main columns). Concerning the clus-
tering error, we obtained similar error levels with all the approaches (see the
last row of Table 1) but less variability when using the weights. Therefore, we
conclude that appropriately scaled weights should be present in both places in
the initialization in order to achieve an efficient and robust weighted clustering
algorithm.

Using the fully weighted algorithm with the average of 10 runs, we obtain in
practice the same four clusters as in the unweighted case (see [5] in which the
clusters and their implications are discussed) with very similar characteristics

3Actually, all three indices have the best value at two but having only two clusters divides
our data simply in high- and low-performing students which does not provide any interesting
patterns additionally.

4Incorporating the weights into k-means++ simply as w instead of
√
w was also tested.

But since
√
w gave, as we proposed in Sec. 2, better results, only these are reported here.
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(see Table 2). The prototypes that describe the four clusters are almost identical.
In particular, also with weights the cluster C2 of mostly girls, with very positive
attitudes towards school and learning but no intentions to use mathematics later
in life, appear. Also an opposite cluster C3 with the majority of boys, that have
the highest intentions to pursue a mathematics related career but otherwise very
negative attitudes towards education, is present, together with the groups of
advantaged high-performing students (C1 ) and their more disadvantaged lower
performing peers (C4 ).

4 Conclusions

In this paper, we modified the k-spatialmedians algorithm [7], an algorithm that
can handle large amounts of missing data, in such a way that it can be used also
for weighted clustering. In order to have an as fast and deterministic approach
as possible, we also introduced weights to the seeding as well as the actual main
body of the k-means++ algorithm which we use in the initialization. Experi-
ments showed that, indeed, the best, i.e. the fastest as well as most accurate,
population-based clustering solution is obtained when weights are incorporated
in all phases of the algorithm.

As pointed out in the introduction, though weighted clustering has been
investigated in theory, it has not been examined much in an applied context.
PISA data sets are prime examples of large data sets with many missing values as
well as weights. We applied weighted clustering to the Finnish subset of the latest
PISA data. Although over-sampling took place for some groups of the student
population, no significant differences in the final results existed, i.e. the general

Without weights in p
√
wi weights in ite- p

√
wi weights in

k-means++ rative reallocation entire algorithm
iter. iter. cluster iter. iter. cluster iter. iter. cluster
in in error in in error in in error
ini. alg. (quality) ini. alg. (quality) ini. alg. (quality)
23 34 5.9464 34 30 0.6458 21 28 0.6035
23 38 0.5176 34 30 0.6458 14 30 0.5424
19 33 0.5161 41 33 0.5176 23 30 0.5424
27 38 0.5176 42 30 0.5176 29 30 0.5424
23 34 0.4983 34 33 0.6458 18 29 0.5424
23 38 0.5176 34 30 0.6458 20 30 0.5424
21 44 6.0403 43 30 0.6458 22 30 0.5424
18 38 0.5176 39 33 0.5176 24 30 0.5424
25 38 0.5176 41 33 0.6458 26 28 0.6035
20 37 0.5176 34 30 0.6458 22 28 0.6035
20 38 1.6108 41 31 0.6073 22 29 0.5607

Table 1: Efficacy and quality of clustering result with and without weights in
initialization. The base level 127450 has been subtracted from all cluster errors.
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valid sample population size math score
cluster indices size all ♀ (in %) ♂ ∅ ♀ ♂
C1 65% 2009 13203 5311 (40%) 7893 574 581 569
C2 68% 2242 14418 8955 (62%) 5463 510 516 499
C3 67% 2450 16723 6495 (39%) 10229 532 539 528
C4 66% 2128 15703 8450 (54%) 7253 466 472 460

C1-C4 67% 8829 60047 29210 (49%) 30837 519 520 517

Table 2: Facts of population clusters

profiles of the clusters without weights (sample) and with weights (population)
were almost identical. However, even though the algorithm is deterministic after
the initialization, and the accuracy of clustering is improved when initialized with
k-means++, still some randomness in the final clustering result remains due to
the randomness in seeding. Hence, a complete comparison between clustering
results persists challenging, not only for population- vs. sample-based clustering
but also for clustering in general.
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