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Abstract. The multi-objective multi-armed bandit (MOMAB) problem is a se-
quential decision process with stochastic rewards. Each arm generates a vector of
rewards instead of a single scalar reward. Moreover, these multiple rewards might
be conflicting. The MOMAB-problem has a set of Pareto optimal arms and an
agent’s goal is not only to find that set but also to play evenly or fairly the arms
in that set. To find the Pareto optimal arms, linear scalarized function or Pareto
dominance relations can be used. The linear scalarized function converts the multi-
objective optimization problem into a single objective one and is a very popular ap-
proach because of its simplicity. The Pareto dominance relations optimizes directly
the multi-objective problem. In this paper, we extend the Thompson Sampling pol-
icy to be used in the MOMAB problem. We propose Pareto Thompson Sampling
and linear scalarized Thompson Sampling approaches. We compare empirically
between Pareto Thompson Sampling and linear scalarized Thompson Sampling on
a test suite of MOMAB problems with Bernoulli distributions. Pareto Thompson
Sampling is the approach with the best empirical performance.

1 Introduction

TheMOMAB problem is a sequential stochastic learning problem [1, 2]. At each time
step t, an agent pulls one arm i from an available arm setA and receives a reward vector
rrri of the arm i withD dimensions (or objectives) as feedback signal. The reward vector
is drawn from a corresponding stationary probability distribution vector, e.g. Bernoulli
distribution B(pppi), where pppi is the success rate vector of the arm i. The reward vector
that the agent receives from the arm i is independent from all other arms and from the
past reward vectors of the pulled arm i. Moreover, the success rate vector pppi of the arm
i has independent D distributions. We assume that the success rate vector of each arm
i is unknown parameter to the agent. Thus, by drawing each arm i, the agent maintains
estimation of the true success rate vector which is known as p̂ppi.

TheMOMAB problem has a set of optimal arms (Pareto front)A∗, that are incom-
parable, cannot be classified using a partial order relation [3]. The agent has to discover
the optimal arms (exploring), to reduce the total Pareto loss of not pulling the optimal
arms, and has to play them fairly (exploiting), to reduce the total unfairness loss. [4]. At
each time step t, the Pareto loss (Pareto regret) is the distance between the success rate
set of the Pareto front and the success rate vector of the selected arm [1]. The unfairness
loss (unfairness regret) is the Shannon entropy which is the measure of disarray on the
frequency of selecting the optimal arms in the Pareto front A∗. The higher entropy is
the higher disorder [5]. Thus, the total Pareto and unfairness regrets are the cumulative
summation of the Pareto and unfairness regrets over t time steps, respectively.
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The Pareto front A∗ can be found either by scalarized function, e.g. Linear Scalar-
ized Function (LSF ) [6], or Pareto Dominance Relation (PDR) [3]. TheLSF converts
the Multi-Objective (MO) space into a single one. The LSF is simple and intuitive,
however, can not find all the optimal arms in a non-convex success rate set. While,
PDR finds the Pareto front by optimizing directly the MO space, however, for large
number of optimal arms and objectives it can not find out all the Pareto optimal arm set.

In this paper, we extend the Thompson Sampling (TS) [7] to be used in theMOO in
order to improve the performance of the scalarized function and Pareto dominance rela-
tion. Linear scalarized Thompson Sampling function (LSF -TS) and Pareto Thompson
Sampling (PTS) trade off between exploration and exploitation by assigning to each
arm i in each objective d a random probability of selection P d

i that is generated from
Beta distribution. The LSF -TS transforms the multi-objective problem into a sin-
gle one using linear scalarized function on the random probability of selection vectors
PPP i = [P 1

i , · · · , PD
i ]T of arms i and selects the arm that has the maximum scalarized

function, where T is the transpose. The PTS uses Pareto dominance relation on the
random probability of selection vectors PPP i of arms i to find the Pareto front A∗.

The rest of the paper is organized as follows: In Section 2 we introduce theMOMAB
problem, PDR, LSF , and the regret measures in the MOMAB. In Section 3 we in-
troduce the Pareto and linear scalarized Thompson sampling. In Section 4, we describe
the experiments set up followed by experimental results. Finally, we conclude the paper.

2 Multi Objective Multi Armed Bandit Framework

Let us consider the MOMAB problems with |A| ≥ 2 arms and with independent
D objectives per arm. At each time step t, the agent pulls one arm i and receives a
reward vector rrri. The reward rdi ∈ {0, 1} in each objective d ∈ D is drawn from a
corresponding Bernoulli distribution with unknown success rate pdi , the probability of
getting reward equals 1. Thus, by drawing each arm i, the agent estimates the success
rate p̂di (t) of the arm i in the objective d. Using Bayesian view, the success rate p̂di can
be estimated by using Beta distribution [5] after receiving the reward rdi as follows:

p̂di (t+ 1) ← αd
i (t+ 1)

αd
i (t+ 1) + βd

i (t+ 1)
, where (1)

αd
i (t+ 1) ← αd

i (t) + 1, if rdi = 1, βd
i (t+ 1)← βd

i (t) + 1, if rdi = 0 (2)

where αd
i (t), and βd

i (t) are the number of successes and failures, respectively at time
step t and αd

i (t + 1), and βd
i (t + 1) are the updated number of successes and failures,

respectively at time step t+ 1 of the arm i in the objective d.
The success rate vector of arm i ∈ A is represented as pppi = [p1i , · · · , pDi ]T . The

agent has a set of optimal arms (Pareto front) A∗ which can be found by the Pareto
dominance relation or linear scalarized function.

The Pareto dominance relation (PDR) finds the Pareto frontA∗ directly in theMO
space [3]. It uses the following relations between the success rate vectors of two arms.
1) Arm i dominates j, i � j, if there exists at least one objective d for which pdi � pdj
and for all other objectives d′ we have pd

′

i � pd
′

j . Arm i is incomparable with j, i ‖ j,
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if and only if there exists at least one objective d for which pdi � pdj and there exists
another objective d′ for which pd

′

i ≺ pd
′

j . 2) Arm i is not dominated by j, j � i, means
that either i � j or i ‖ j. Using these relations, Pareto front A∗ ⊂ A be the arm set that
are not dominated by all other arms.

Linear scalarization function (LSF ) converts the MOO problem into a single
one [6]. However, solving a MOO problem means finding the Pareto front A∗. Thus,
we need a set of scalarized functions FFF = {f1, · · · , fS} to generate a variety of ele-
ments belonging to the Pareto front A∗. Each scalarized function fs ∈ FFF has a corre-
sponding predefined weight set wwws ∈ WWW , where WWW = (www1, · · · ,wwwS). The predefined
total weight setWWW is uniformly random spread sampling in the weighted space [8].

The LSF assigns to each value of the success rate vector pppi of an arm i a weight
wd and the result is the sum of these weighted mean values. Given a predefined set of
weightswwws = (w1, · · · , wD) such that

∑D
d=1 w

d = 1, the LSF across pppi is:

fs(pppi) = w1p1i + · · ·+ wDpDi (3)

where fs(pppi) is a linear scalarized function s ∈ S on the success rate vector pppi of the
arm i. After transforming the MO problem to a single one, the LSF fs selects the
arm i∗fs = argmax1≤i≤A f

s(pppi) that has the maximum LSF value. The LSF is very
popular because of its simplicity. However, it can not find all the optimal arms in the
Pareto front A∗, if the A∗ has a non-convex success rate vectors [8].

In the MOMAB, the agent has to find both the Pareto front A∗ (or exploring the
optimal arms) and play the optimal arms fairly (or exploiting the optimal arms). As a
result, there are two regret measures. The Pareto regret measure (RP ) [1] measures the
distance between a success rate vector of an arm i that is pulled at time step t and the
Pareto front A∗. Pareto regret RP is calculated by finding firstly the virtual distance
dis∗. The virtual distance dis∗ is defined as the minimum distance that is added to
the success rate vector of the pulled arm pppt at time step t in each objective to create a
virtual success rate vector ppp∗t = pppt +εεε

∗ that is incomparable with all the arms in Pareto
set A∗, i.e. ppp∗t ||pppi ∀i∈A∗ . Where εεε∗ is a vector, εεε∗ = [dis∗,1, · · · , dis∗,D]T . Then,
the Pareto regret RP = dis(pppt, ppp

∗
t ) = dis(εεε∗,000) is the Euclidean distance between the

success rate vectors of the virtual arm ppp∗t and the pulled arm pppt at time step t, Thus, the
regret of the Pareto front is 0 for optimal arms. The unfairness regret measure [5] is the
Shannon entropy RSE which is the measure of disorder on the frequency of selecting
the optimal arms in the Pareto front A∗. The higher the entropy, the higher the disorder.
The Shannon entropy at time step t, RSE(t) = −(1/N|A∗|(t))

∑
i∗∈A∗ pi∗(t) ln(pi∗(t)),

where pi∗(t) = Ni∗ (t)/N(t) is the frequency of selecting an optimal arm i∗ at time step
t, whereNi∗(t) is the number of times the optimal arm i∗ has been selected, N(t) is the
number of times all arms i = 1, · · · , A have been selected, and N|A∗|(t) is the number
of times the optimal arms, i∗ = 1, · · · , |A∗| have been selected at time step t.

3 Multi-Objective Thompson sampling

In the Bernoulli one-objective multi-armed bandit, the reward is a stochastic scalar
value, there is only one optimal arm. The reward ri of an arm i is either 0, or 1 with
unknown success rate pi. Thompson sampling (TS) [7] tradesoff between exploration
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1.Input:number of objectives |D|;number of arms |A|;reward r ∼ B(ppp)
2.Initialize: αd

i = 1; βd
i = 1; p̂di = 0.5 ∀i ∈ A, ∀d ∈ D

3.For time step t = 1, · · · , T
4. For arm i = 1, · · · , A
5. For all objectives d ∈ D, Sample P d

i from Beta(αd
i , β

d
i )

6. End For
7.Find:Pareto optimal arms I∗ such that ∀i ∈ I∗ and ∀j /∈ I∗,PPP j � PPP i

8.Select i∗ uniformly, at random from I∗
9.Observe: rrri∗;Update:αααi∗,βββi∗;Compute:unfairness& Pareto regrets
10.End For
11.Output: Unfairness regret; Pareto regret

Fig. 1: Algorithm: (Pareto Thompson sampling PTS).

and exploitation by using randomness of the Beta distribution. With Bayesian priors
on the success rate pi of each arm i, TS assumes initially the number of successes,
αi and the number of failures, βi of each arm i is 1. At each time t, TS samples the
probability of selection Pi of each arm i ∈ A (the probability that an arm i is optimal)
from Beta distribution, i.e. Pi = Beta(αi, βi). TS selects the optimal arm i∗ that has
the maximum probability of selection Pi∗ , i∗ = argmaxi∈A Pi and observes the reward
ri∗ . If ri∗ = 1, then TS updates the number of successes αi∗ ← αi∗ + 1 of the arm i∗.
If ri∗ = 0, then TS updates the number of failures βi∗ ← βi∗ + 1 of the arm i∗. Since,
TS is very easy to implement [9], we will extend it to MOMAB.

Pareto Thompson Sampling (PTS) [5] explores all the arms by using randomness,
it calculates a probability of selection PPP i = [P 1

i , · · · , PD
i ]T of each arm i. It uses

Pareto dominance relation to exploit the optimal arms. The pseudocode of the PTS
algorithm is given in Figure (1). Initially (Step 2), PTS assumes each arm i is pulled
two times and the number of successes αd

i = 1 and failures βd
i = 1 in each objective

d are equal. At each time step t, it samples the probability of selection vector PPP i of
each arm i ∈ A from Beta distribution, PPP i = Beta(αααi,βββi) (Steps 4-6). Note that, PTS
does not use Beta distribution to estimated the success rate pppi of an arm i, instead it uses
Beta distribution to sample the probability of selection P d

i ∈ (0, 1) of each arm i in each
objective d. PTS selects its optimal arms i∗ ∈ I∗ that are not dominated by all other
arms using Pareto dominance relation, where I∗ is the PTS optimal arm set (Step 7).
PTS pulls uniformly at random one of the arms i∗, observes the corresponding reward
vector rrri∗ , updates the number of successes αααi∗ , and failures βββi∗ vectors and computes
the Pareto and unfairness regrets (Step 9). This procedure is repeated T steps.

Linear scalarized Thompson Sampling function (LSF -TS) converts the MO prob-
lem into a single objective one by performing LSF on the probability of selection
vector PPP i of each arm i ∈ A. The pseudocode of the LSF -TS is given in Figure 2.

Given the scalarized function set S = (f1, · · · , fS) where each scalarized function
s (we use s to refer the scalarized function fs) has different predefined weight set,
wwws = (w1,s, · · · , wD,s). For each s ∈ S, LSF -TS assumes each arm i is pulled two
times and the number of successes αd,s

i = 1 equals to number of failures βd,s
i = 1 in

each objective d (Step 2). After initial playing, LSF -TS pulls uniformly at random
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1.Input:number of arms |A| and objectives |D|;reward r ∼ B(ppp);
set of scalarized function S = (f1, · · · , fs, · · · , fS)
2.Initialization:∀s ∈ S,Set:αd,s

i = 1;βd,s
i = 1;p̂d,si = 1

2
∀i ∈ A, ∀d ∈ D

3. Repeat
4. Select: a function s ∈ S uniformly, at random
5. For arm i = 1, · · · , A
6. For all objectives d ∈ D,Sample P d,s

i from Beta(αd,s
i , βd,s

i )
7. End For
8. Select: the optimal arm i∗,s that maximizes fs

9.Observe:rrri∗,s;Update:ααα
s
i∗,βββ

s
i∗;Compute:unfairness& Pareto regrets

10. Until T
11. Output: Unfairness regret; Pareto regret.

Fig. 2: Algorithm: (Linear scalarized Thompson sampling function LSF -TS).

one of the scalarized function (Step 4), samples the probability of selection vector PPP s
i

of each arm i ∈ A under s by using Beta distribution, PPP s
i = Beta(αααs

i ,βββ
s
i ) (Steps 5-7),

converts the MO problem into one objective by performing linear scalarized function
on the PPP s

i , Equation 3, and selects the optimal arm i∗,s that maximizes the scalarized
function s (Step 8). LSF -TS observes the reward vector of i∗,s, updates the number
of successes αααs

i∗ , and failures βββs
i∗ vectors, Equation 2 and calculates the Pareto, and

unfairness regrets (Step 9). This procedure is repeated until the end of playing T steps.

4 Experiments

In this section, we experimentally compare Pareto and linear scalarized function Thomp-
son Sampling, Section 3. The performance measures are: the average cumulative Pareto
and unfairness regrets at each time step which are averaged on M experiments. The
number of experimentsM and the horizon of each experiment T are 1000. The rewards
rrri of arms i are drawn from Bernoulli distribution B(pppi) with unknown true success rate
pppi. As [5], each arm i is played initially two times and the number of successes αd

i = 1
equals to the number of failures βd

i = 1 in each objective d.
Experiment: We use the same example in [1] with extra arms and objectives. The

example in [1] contains non convex success rate set with |A| = 6 and D = 2. The
success rate set is (ppp1 = [0.55, 0.5]T , ppp2 = [0.53, 0.51]T , ppp3 = [0.52, 0.54]T , ppp4 =
[0.5, 0.57]T , ppp5 = [0.51, 0.51]T , ppp6 = [0.5, 0.5]T ). Note that, Pareto front is A∗ =
(a∗1, a

∗
2, a
∗
3, a
∗
4) where a∗i refers to the optimal arm i∗. The suboptimal a5 is not domi-

nated by the two optimal arms a∗1 and a∗4, but a∗2 and a∗3 dominates a5 while a6 is dom-
inated by all the other mean vectors. In order to compare the variants TS, i.e. PTS
and LSF -TS performances on a more complex MOMAB problems, we add another 14
arms and another 3 objectives resulting in 5-D, 20-A. The Pareto frontA∗ contains now
7 arms. We consider 11 weight sets,WWW = {(1, 0)T , (0.9, 0.1)T , · · · , (0.1, 0.9)T , (0, 1)T }
for LSF -TS. Figure 3 gives the average cumulative Pareto and unfairness regret per-
formances. The x-axis is the horizon of each experiment. The y-axis is either the
cumulative Pareto or unfairness regret performance which is the average of 1000 ex-
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periments. Figure 3 shows PTS outperforms LSF -TS according to both regrets per-
formance, where PTS performs slightly better than LSF -TS according to the Pareto
regret and PTS performs dramatically better than LSF -TS according to the unfairness
regret performance.

0 200 400 600 800 1000
0

50

100

150

200

250

Time step

C
u

m
u

la
ti
v
e
 P

a
re

to
 R

e
g
re

t

 

 

PTS

LSF−TS

0 200 400 600 800 1000
0

5

10

15

Time step

C
u
m

u
la

ti
v
e
 U

n
fa

ir
n
e
s
s
 R

e
g
re

t

 

 

PTS

LSF−TS

Fig. 3: Performance on 5-objective, 20-armed with |A∗| = 7. Left figure shows the
cumulative Pareto regret. Right figure shows the cumulative unfairness regret.

5 Conclusions

We presented MOMAB framework. We extended Thompson Sampling TS to the
MOMAB. We proposed two variants of TS in the MOMAB, LSF -TS and PTS.
Finally, we compared PTS, and LSF -TS and concluded that: PTS outperforms
LSF -TS according to the Pareto and unfairness regrets.
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