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Abstract. Profitability and other economic aspects of agriculture can
be analyzed using various machine learning methods. In this paper, we
compare linear, additive and recursive partitioning -based models for pre-
dicting the profitability of farms using information easily available to a
dairy farmer. We find that an ensemble of recursive partitioning methods
provides the best prediction accuracy. We also analyze the importance of
the predictor variables. These findings may turn out to be useful in in-
creasing our understanding of the factors affecting farm profitability and
developing a web-service for farmers to predict the performance of their
own farm enterprise.

1 Introduction

The profitability of farm enterprises is very important, as it makes it possible
for farms to stay in business in the long-term and, thus, be part of a stable food
supply chain. Farm profitability in Finland has fluctuated strongly in recent
years [1], which can complicate farmers’ planning for the future.

In this paper, various machine learning methods are compared in the task of
predicting the profitability of agricultural enterprises. The data were collected
from a sample of bookkeeping farms that are a source of data for characterizing
Finnish agriculture in the EconomyDoctor service of Natural Resources Institute
Finland (Luke) [2].

EconomyDoctor is a source of various information concerning the economy
and production process of different types of farms and horticultural enterprises
as well as reindeer farming. Annual data is availabe in the service since 2000,
and forecasts of structural development are made until 2020.

The aim is to build a new web-service in EconomyDoctor for farmers that
would predict the profitability of their enterprises. Therefore, choosing a method
with good prediction accuracy is important. Another aim is to understand better
the factors affecting the profitability of an agricultural enterprise. Interpretable
and understandable models are useful in realizing this second aim.

Earlier, neural networks have been used in predicting the sufficiency of inter-
nal financing of farms [3] as well as for analyzing profiles of farm profitability [4].
Farm size change has been predicted using machine learning techniques [5].
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2 Profitability bookkeeping data

Annual profitability data for Finnish agricultural and horticultural enterprises
show the average results of over 50 000 enterprises and are calculated from the
profitability bookkeeping maintained by Luke. The profitability of Finnish farms
is monitored annually using a sample of approximately 1 000 farms. Data from
the period 2000–2011 were used in this study. We focused only on dairy farms
in this work, since the factors affecting profitability are not necessarily the same
in different types of production. The number of bookkeeping dairy farms varied
between 291 and 387 in the study period.

The form of the bookkeeping data is similar to data in the Farm Accountancy
Data Network (FADN) [6]. There are thousands of variables in the bookkeeping
data bank. The aim was to select variables that are easily available to farmers.
To address this issue, a selection of variables related to single-entry bookkeeping
accounts, production, work-load and taxation were chosen. Euro-based variables
were deflated to match the consumer price index. Variables having nearly zero
variance were removed. Highly correlated variables were removed when the pair-
wise absolute value of Pearson’s correlation coefficient was over 0.90. The final
data set included 220 variables, with 4 228 observations.

3 Methods for prediction

In this study, several predictive modeling methods incorporating a variable selec-
tion algorithm were chosen. The following methods and their R [7] applications
were used in the variable selection and prediction.

• Linear least squares models:

Linear Regression with Backwards Selection [8], leapBackward [9]; Lin-
ear Regression with Forward Selection [8], leapForward [9]; Linear Re-
gression with Stepwise Selection [8], leapSeq [9];

• Penalized linear models:

Elastic Net [10], enet [11]; Elastic Net [12], glmnet [13]; Ridge Regres-
sion with Variable Selection [14], foba [15]; Least Angle Regression [16],
lars [17]; Sparse Regression [18], lasso [17]; Relaxed Lasso [19], relaxo [20]

• Additive model:

Gradient Boosting with Smooth Components [21], gamboost [22]

• Recursive partitioning models:

Implementation of the CART algorithm [23], rpart [24]; Bagged CART
[25], treebag [26]; Implementation of M5 rule-based model tree [27] with
additional corrections based on nearest neighbors [28], cubist [29]; Con-
ditional Inference Tree, ctree [30]; Random Forest [31], rf [32]; Quantile
Random Forest [33], qrf [34]; Interpretable tree-like estimator [35], node-
Harvest [36]; Stochastic Gradient Boosting [37], gbm [38]; Multivariate
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Adaptive Regression Spline [39], earth [40]; Multivariate Adaptive Re-
gression Spline [39] with Generalized Cross Validation (GCV) penalty per
knot, gcvEarth [40];

• Ensemble selection model:

Forward stepwise selection of models into the ensemble when maximizing
the performance to the Root Mean Square Error (RMSE) on a training
set [41], ensemble [42]

All the predictive models were trained through the interface of the train
function provided by the caret package [43]. The train function develops the
parameter tuning, selecting the values that maximize accuracy in the RMSE.

The methods were trained and compared using 10 fold cross-validation with
5 repeats. The data were divided into training (60%), validation (6%) and
test sets (33%). First, each method was used for recursive feature selection
incorporating resampling using the rfe function in the caret package. The rfe
function finds the optimum subset of predictors for the most accurate model. We
used the ranked lists of predictors from each method to train the final models.
As the aim of the study was to build a web application, for usability reasons
we considered having a predictive model based on a maximum of 20 predictors.
The preliminary results from the 5 best models in the variable selection (cubist,
gbm, earth, gcvEarth, rf) indicated that within the variable subsets from 10
to 20, the subsets with 18 variables were the most accurate. Thus, we decided
to use a subset size of 18 predictors for the final model tuning.

In the final model tuning, the train function was used to optimize the pa-
rameters for each model. Finally, an ensemble was built by selecting the subset
of models that yielded the best performance on RMSE. Models are selected for
inclusion in the ensemble using greedy forward stepwise model selection with
1000 iterations. Models added multiple times obtain more weight in the ensem-
ble average. The indexes of the training set for each fold are the same for all the
models in the final model training.

4 Results

The methods were compared as described in the previous section. The results
on accuracy are presented in Table 1. The ensemble model that included the
cubist (weight = 0.396), gbm (weight = 0.395) and earth (weight = 0.209)
models yielded the best performance on the training set. The single model with
the highest prediction accuracy was the cubist model. The small differences
between the training and test set results indicate no major overfitting.

The ensemble model’s weights were further utilized to rank the predictors.
Each predictor was given points according to its placing in the ranked predictor
list of 18 variables in each model. The first placing got 18 points, the last placing
1 point. The points were then penalized according to the corresponding weight
in the ensemble model and summed. There were altogether 30 variables in the
ensemble model. Table 2 shows the 15 most important predictors.
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Model Training Test

ensemble 0.241 0.252
cubist 0.251 0.256
gbm 0.252 0.266
earth 0.262 0.275
gcvEarth 0.264 0.275
rf 0.264 0.265
gamboost 0.278 0.292
qrf 0.289 0.295
nodeHarvest 0.293 0.305
treebag 0.294 0.300
lars 0.300 0.306
foba 0.301 0.306
lasso 0.301 0.306
leapForward 0.303 0.308
leapBackward 0.303 0.307
leapSeq 0.303 0.307
glmnet 0.314 0.337
ctree 0.319 0.329
rpart 0.326 0.331
relaxo 0.683 0.690

Table 1: The prediction perfor-
mance of the models in RMSE for
training set and test set data.

Predictors Points

Net result 18.0
Wage claim 14.0
Total depreciation 12.2
Depreciation max. 10% e.g. on
support payment entitlements 10.3
Total expenses per revenues 9.0
Milk produced per milk quota 6.9
Undepreciated balance, year end 6.3
Investment and improvement cost
depreciation max. 25% 5.3
Total work load 4.2
Support and recompense
excl. VAT 4.0
Feed unit yield 4.0
Interest costs 4.0
Depreciation max. 25%
e.g. on machinery 3.6
Work load in cattle husbandry
per milk produced 3.5
Workload involved in investments 3.2

Table 2: The 15 most important predictors for
profitability in dairy farms. Predictors in a cursive
font are taxation-related bookkeeping variables.
Others are production and workload related.

5 Conclusions

The prediction capabilities of the methods varied in regard to this problem. The
best methods provided useful results, which were considered in the implementa-
tion of a web-based prediction system. We found that an ensemble of recursive
partitioning methods provides the best prediction accuracy. The most accurate
single prediction method was the cubist model, a rule-based tree model with
additional corrections based on nearest neighbors. The RMSE value of 0.25 is
acceptable for web application use. Typically, the profitability ratio of a dairy
farm is between -0.3 and 1.4. Hence, there is useful predictive power in the best
models. There is, however, still room for improvement and it is probable that
not all factors affecting profitability were present in the data.

The feature selection procedure resulted in scores for the importance of pre-
dictors and provides a standpoint for the further study of factors affecting the
profitability of dairy farms. The ranked predictor list indicates that profitability
is related to the productivity, the scale of operations, indebtedness, and the level
of investments. These findings are plausible, and suggest that real economic re-
latioships may have been captured by the models. Similar analysis of other types
of agricultural production is a subject of future research.
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