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Abstract. After decades of dominating wind forecasts based on numer-
ical weather predictions, statistical models gained attention for shortest-
term forecast horizons in the recent past. A rigorous experimental compar-
ison between both model types is rare. In this paper, we compare COSMO-
DE EPS forecasts from the German Meteorological Service (DWD) post-
processed with non-homogeneous Gaussian regression to a multivariate
support vector regression model. Further, a hybrid model is introduced
that employs a weighted prediction of both approaches.

1 Introduction

A future energy grid with high penetration of wind energy can only be balanced
with precise forecasts of upcoming wind speed and resulting wind power. To
improve wind power predictions, various methods have been developed and ap-
plied in the past. Most approaches are based on numerical weather prediction
models [2], which describe the dynamics of the atmosphere by solving differen-
tial equations. Numerical weather predictions are used for short- and long-term
predictions and usually cover a period in the range of hours to a few days. The
second type of prediction methods is based on statistical learning. Generally,
these models are based on machine learning algorithms deriving functional de-
pendencies directly from the observations. The advantage of statistical models
is that they can be run on standard personal computers within few minutes.

2 Numerical Weather Prediction Model and Calibration

We use operational forecasts of the COSMO-DE EPS; a high-resolution local en-
semble prediction system run by the German Meteorological Service (DWD) [1].
The model consists of 20 ensemble members and the forecasts are initialized at
00:00 UTC. The maximum forecast lead time is 21 hours, and the output is
available hourly. In this study, we use the ensemble mean as a point forecast.
The ensemble mean forecast is expected to be as good or even better than a
deterministic forecast. The model solves the basic atmospheric equations nu-
merically. Model errors are induced for example by insufficient knowledge of
the initial state of the integration and by the fact, that many physical processes
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cannot be explicitly modeled, because the computational cost would be too high
and are thus parametrized. To reduce model errors, we employ statistical post-
processing, which is often called calibration.

Calibration

A well-established method for correcting spread and bias of ensemble forecasts is
non-homogeneous Gaussian regression (NGR), which was developed by Gneiting
et al. [3]. NGR transforms the ensemble forecast to a probability density. Tho-
rarinsdottir and Gneiting have shown, that a truncated Gaussian distribution
can be used to model wind speed forecasts [6]. Location (v) and scale parameter
(p) of this predictive distribution are estimated from ensemble mean forecasts
(Z) and ensemble standard deviation (S) by linear regression: v = a + bT and
p? =c+dS?.

The regression parameters a, b, ¢ and d are estimated by minimization of a proper
scoring rule over a training period. Here we follow [6] and use multidimensional
minimization of the continuous ranked probability score (crps). The crps of the
cumulative distribution function of the prediction f and the observation y is
defined as [4]:

o0
2
as(fog) = [ 110~ H - ) de 1)
—00
H is the Heaviside function. For the multidimensional minimization, we mini-
mize the mean crps over a N-day training period.

CRPS(f.9) = 1 Y crps(fa,b.c,d).p) @

The minimization is done using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm as implemented in the GNU R function opTiM [11]. The chosen
training period is 100 days and the training is computed for every lead time
separately.

3 Statistical Model: Spatio-Temporal Time Series Model

As statistical model we use the approach in-

- troduced by Kramer and Gieseke [5] and fur-

—— = ther analyzed by Treiber et al. [8, 7]. This
-|t-3|t—2|t-1|t|t+1|t+2-t+4|-- L. . .

, — . = model makes predictions with past wind power

Pu=2 10 A=y measurements. For this task, we formulate the

prediction as regression problem. Let us first

Fig. 1: assume, we intend to predict the wind speed

The pattern x is mapped to  of a single station with its time series. The

label y. The time horizon of ~ wind speed measurement x = p(t) (pattern)

the prediction is A. is mapped to the wind speed at a target time

y = pr(t + ) (label) with A € NT being the
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forecast horizon. For our regression model we assume to have IV of such pattern-
label pairs that are the basis of the training set T' = {(x1,41), ..., (Xn,yn)} and
allow, via a regression, to predict the label for a unknown pattern x’ (the present
wind scenario). One can assume that this model yields better predictions if more
information of the time series will be used. For this reason, we extend the pat-
tern x by considering past measurements pr(t — 1),..., pp(t — pu) with p € NT.
Since we aim to catch spatio-temporal correlations, we add further information
to our patterns from m neighboring stations. Their attributes can be composed
in the same way like for the target stations.

Finally, we learn a prediction function f(x) — y by employing a Support

Vector Regression (SVR) [9] with an RBF-kernel k(x,x’) = exp (_Hx2—7xz'H2)

g

4 Experimental Comparison

4.1 Wind Data

We use 10 m wind speed measurements from 253 synoptic stations in Germany.
The measurement values are available hourly. The measurements are conducted
either by sonic or cup anemometers. Some basic quality control is applied to
the data, e.g., checks for negative wind speeds. The applied data of measured
wind speeds covers a time interval from 01/01/2009 to 8/30/2013. The predic-
tion of the Cosmo-EPS model and the calibrated adjustment are available from
12/01/2011 to 08/30/2013. Thus, we decided to train the statistical model on
data from 01/01/2009 to 11/30/2011.

4.2 Experimental Settings

For the parameter tuning of the SVR, we employ a 3-fold cross-validation on
the training set. We test via grid search values of the trade-off parameter C' €
{10, 100,500, 1000, 5000} and the kernel bandwidth o = 10~% with i = 3, 4,5, 6.
Due to the failure or the maintenance of the anemometers, the measurements
are often not complete. Since the statistical models cannot naturally cope with
missing data, imputation methods usually have to be applied. However, in our
experimental study, we only use complete pattern-label pairs for the training
of the SVR model. The advantage is that we avoid interactions between the
imputation technique and the later forecast results. Finally, we only make pre-
dictions for stations with at least 1000 training pairs for the statistical model.
In order not to skew the results by a too low sample size, we enforce that on
at least l,;, = 100 days the predictions are compared. This constraint and the
one corresponding to the SVR training are fulfilled for z = 237 stations, which
are analyzed in the following. For the spatio-temporal model, we consider all
stations that are located in a radius of 150 km from the target station. Typically,
this are 20-40 stations.
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4.3 Verification for Different Forecast Lead Times

In the first part of the experimental analysis, we want to compare the different
forecast types, i.e., the uncalibrated, the calibrated and the SVR model. We are
interested in the prediction accuracy and its behavior with regard to an increas-
ing prediction horizon. In the experimental study, we have to notice that the
mean wind speed differs from station to station. We normalize the error for each

station that is normalized with the mean observed
wind speed yJ. This results in the follow-
ing error measure: 0.55
EE SVR
0.50 - - I NWP calibrated
237 =3 NWP uncalibrated

RMSRE = — MSRE;
RMSR 237;R SRE; (3)

with the single station error:

N

. . 2 0.15
1 J T2 05 a8 e 7 s
RMSRE; = |+ > (fy> (4) e

=1 Fig. 2: Comparison of the three

of station j. Fig. 2 visualizes the results Models

and shows that the statistical SVR predictions are superior for a forecast horizon
up to three hours. We can observe that the accuracy for the statistical model
initially grows linearly with the forecast horizon. The calibrated NWP model
has a relatively high error already at lead time +1 h. Its forecast error does not
grow with lead time, it even decreases due to the diurnal cycle of wind speed
which leads to different magnitudes of errors throughout the day. The same
holds for the uncalibrated NWP forecasts, which perform significantly worse
than the calibrated ones.

4.4 Direct Comparison for Shortest-term Predictions

In the previous section, we observed that  zo1 horizon = 1n

. §0.1
the calibrated forecasts are more pre-  2g4q
cise with regard to the RMSRE than the 2004

. . . < 0.0 -
raw predictions for every forecast horizon. 5021 horizon = 2
. . <
Now, we compare this model with the sta- 377 -
. . . [T
tistical one. The calibrated model serves  =o.04
. . 9. -

as reference in our studies. To analyze 99 horizon = 3h

501

the quality of the two different prediction  §o1

0.0
models, we first compute the root mean £, i
square error RMSE; for each station j: 200G =555 01 00, 01 02 03 04 05

N
RMSE; = 1 Z (ff _ yf>2 (5) Fig. 3: Visualization of the distribu-
N &~ tion of the RMSES for lead times +1
to +3h.
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With these values, we compute the relative skill score RMSES; for each station j
based on the RMSE; for the statistical model (RMSEJS-VR) and for the calibrated

model (RMSEWFeal).

RMSESV®

RMSES; = 1 - ipe
J

(6)
The RMSES; indicates how the statistical model behaves with regard to the
calibrated model. For example, a positive value for the RMSES points out
that the statistical model outperforms the other model and the other way
round. In Fig. 3, the histograms of the individual RMSES are shown for
three horizons, i.e., one to three hours. One can observe that an increasing
prediction horizon causes a shift of the distribution to the left. At +1h lead
time, the calibrated NWP forecast achieves a higher accuracy only for one sta-
tion. For a horizon of three hours, the distribution gets more asymmetric.

The next step
is an analysis, for
which locations the
statistical model gen-
erates better pre-
dictions. Fig. 4
shows a map of
all stations. In
the two hour ahead
scenario, there is

(a) horizon = 1h (b) horizon = 2h (c) horizon = 3h a greater accumu-
lation of stations

Fig. 4: Black points represent stations, whose statistical in the western part
predictions are better than the numerical ones. For a fore- of Germany, where
cast horizon of one hour A = 1, the numerical prediction the statistical pre-
is better for one station. For A = 2, 20 stations and for dictions are more

A = 3, 102 stations achieve a higher accuracy with the inaccurate, while in
numerical model. the three hour ahead

predictions the sta-
tions are homogenously distributed. A further geographical dependency on the
superiority of any model cannot be observed.

4.5 Combination of Numerical and Statistical Forecasts

In the following, we analyze, if the combination of both prediction models
achieves a higher accuracy. To investigate this question, we employ a linear
weighted combination of both models:

f: a- fNWPcal + (1 _ a) X fSVR (7)

with coefficient « € [0,1]. Fig. 5 shows a study of parameter a w.r.t. dif-
ferent values for o and various prediction horizons. We can observe that the
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hybridization of both models is always %%
better than a single model, i.e., there is  °**9:
always a minimal error for 0 < a < 1 in
comparison to both extremes @ = 0 and
a = 1. Further, we can observe a wider
spread of errors on the left (higher weight
of statistical model fSVR) than on the os0d o
right (higher weight of numerical model

0.275+--
fNWPcal)' 0.0 0.2 0.4 0.6 0.8 1.0

0.425 "

0.400

0.375

RMSRE

0.350 50w

0.325;

5 Conclusions Fig. 5: RMSRE of linear combina-
tions for all stations with a variable
In this paper, statistical and numerical linear coefficient «, see Equation 7.
models for wind speed prediction are com-
pared. We demonstrate that the multivariate spatio-temporal statistical model
is superior for a horizon up to three hours. For a larger forecast horizon, the
calibrated numerical model achieves a higher accuracy. Due to few time steps,
for which both models yield complete predictions, only a linear hybridization
has been analyzed. In the future, we will explore further types of hybridizations
applicable on larger data sets.
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