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Abstract. This paper proposes a novel pruning approach for Extreme
Learning Machines. Hidden neurons ranking and selection are performed
using a priori information expressed by affinity matrices. We show that
the similarity between the affinity matrix of the input patterns and the
affinity matrix of the hidden layer output patterns can be seen as a mea-
sure of the data structural retention through the network. However, from
a certain similarity level, adding new hidden nodes will have small or no
effect on the amount of information propagated from the input. The pro-
posed approach automatically determines this level and hence the suitable
number of hidden nodes. Experiments are performed using classification
problems to validate the proposed approach.

1 Introduction

The Extreme Learning Machine (ELM) [1] is a learning algorithm for single
layer feedforward network (SLFNs) with a low time complexity able to deal with
massive datasets at a fast training convergence and with a good generalization
performance. The random definition of the hidden layer parameters and the
estimation of the output weights by Ordinary Least Squares (OLS) allow training
in a single iteration.

The original ELM formulation does not establish any methodology for SLFN
structure definition. The hidden layer dimension is often inferred by trial and
error. Several modifications to the ELM algorithm have already been proposed
to cope with this issue [2, 3, 4]. However, most of the existing methods demands
the use of a validation dataset and/or the computation of the network parameters
for each candidate structure.

This paper proposes a novel modification to the ELM learning algorithm, the
Affinity Based Pruned ELM (AFP-ELM). Basically, we assume that the SLFN
predictive performance is associated not only with the hidden layer linearization
capability, but also with the amount of input information it can propagate to
the network output. Moreover, we consider that the structural retention of
the input patterns in the hidden layer output patterns is associated with the
proximity degree between their affinity matrices [5]. This degree depends on the
hidden layer dimension. The greater the number of hidden nodes, the higher
the structural retention degree. However, from a certain similarity level between
those affinity matrices, adding new hidden nodes will have small or no effect on
the amount of information propagated from the input. The proposed method
automatically determines this level. The symmetry between the affinity matrices
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of the input data and the hidden layer output data is quantified by the empirical
alignment [6]. This metric is also used to rank and select the hidden nodes.
Since no output information is needed, hidden neurons are selected without any
beforehand network parameter tuning and using only training data.

To check whether our a priori information based pruning provides good
predictive performance, we test the equivalence between the AFP-ELM and
the original ELM algorithm with the number of hidden neurons estimated via
cross-validation (CV-ELM). Nine classification datasets are considered.

The remainder of this paper is organized as follows. Section 2 presents a brief
review of the ELM learning algorithm. Next, section 3 presents the main con-
cepts regarding affinity matrices and empirical alignment, and then the proposed
learning algorithm. Section 4 presents the numerical experiments for classifica-
tion problems and a statistical analysis of the results. Finally, discussion and
conclusion are presented in section 5.

2 The Extreme Learning Machine

Given a set of N distinct observations (xi, yi), where xi = [xi1, xi2, . . . , xim]T ∈
Rm and yi ∈ R for i = 1, . . . , N , a SLFN can be used to model these observations
as follows:

ŷi =
k∑

j=1

βjg(vjxi + bj), i = 1, . . . , N (1)

where k is the number of hidden layer neurons, g() is an activation function,
vj = [vj1, vj2, . . . , vjm]T is the weight vector connecting the inputs to the jth

neuron, βj is the weight connecting the jth neuron to the output and bj is the
jth neuron bias term, for j = 1, . . . , k.

In order for a SLFN composed by k neurons to be able to approximate N
observations with a null error there must exist vj , βj and bj , for j = 1, · · · , k
such that:

Hβ = Y (2)

where HN×k is the hidden layer output.
ELM [1] is a SLFN learning algorithm where vj and bj for j = 1, . . . , k

are randomly assigned and the output weights are computed using the Moore-
Penrose pseudo-inverse:

β̂ = (HTH)−1HTY = H+Y (3)

3 Node Selection by Alignment Ratio

3.1 Affinity Matrices and Empirical Alignment

Given a m-dimensional dataset X = {xi}Ni=1, where N is the number of pat-
terns, the elements sij of the Affinity Matrix S = [sij ] contain a measurement
or estimation of the affinity of the pair of patterns (xi,xj), where affinity is de-
fined as a likeness based on relationship or causal connection [5]. Alternatively,
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a Dissimilarity Matrix D = [dij ] contain a measurement or estimation of the
distance of a given pair of patterns.

In order to quantify the degree of input structural retention of the SLFN
hidden layer, the empirical alignment described in [6] was adopted. Thus the
alignment quantity A(I, P ) between input and hidden layer projection can be
expressed in the form

A(I, P ) =
〈I, P 〉F√

〈I, I〉F 〈P, P 〉F
(4)

where I and P are affinity matrices of the input and the hidden layer projection,
respectively, and 〈., .〉F is the Frobenius inner product [6].

3.2 Affinity Based Pruned ELM

The node selection approach proposed here creates a ranking of the hidden
neurons according to their ability to retain input information. The importance
of each neuron in terms of input structural retention is quantified by the so-
called empirical alignment ratio, a metric proposed in this paper. Considering
the ith neuron the empirical alignment ratio is defined as follows:

riA =
A(I, Pi)

A(I, P )
(5)

where Pi is the Euclidean dissimilarity matrix of the hidden layer projection
without the ith neuron. The empirical alignment ratio quantifies the negative
effect on structural retention when the ith neuron is suppressed. Thus the lower
the ratio, the greater is the input information loss brought by leaving out the
neuron. The usefulness of a hidden node is therefore inversely proportional to
its empirical alignment ratio.

Starting from a high dimensional hidden layer, only a few neurons (with
the lowest empirical alignment ratio) are sufficient to propagate enough input
information to estimate the SLFN output. Based on this idea the ranked neurons
are inserted one-by-one in the hidden layer in the ascending order of alignment
ratio. At each node insertion the empirical alignment between SLFN input and
hidden layer output is computed. The curve relating the hidden layer dimension
with the empirical alignment registered is named here empirical alignment curve.
For a certain number of nodes this curve saturates, indicating that the remaining
neurons have small or no contribution to the structural retention of the input
patterns.

Therefore, the compromise point between the SLFN complexity and the hid-
den layer structural retention degree may be the empirical alignment curve knee.
As defined in [7], the curve knee is the point of maximal curvature. The method
proposed in [8] was adopted to find the knee point of the empirical alignment
curve. Such method consists in determining the point with the maximum dis-
tance dmax to the line segment defined by the first and last alignment curve
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points:

dmax = max

[√
(C − Px)2 + (aC + c− Py)2

]
(6)

where (Px, Py) are the coordinates of any point on the curve, y = ax+ c is the
equation of the straight line that passes through the first and last curve points,
and C is a constant defined as follows:

Px + aPy − ac
a2 + 1

(7)

The proposed method provides a network structure definition based solely
on the inputs. No previous parameter adjustment is needed. Furthermore, the
method guides to the choice of the most parsimonious model in terms of input
data structural retention using only training data.

4 Experimental Results

In this section, the proposed modified ELM learning algorithm is evaluated using
supervised classification problems. Nine binary classification datasets collected
from the UCI Repository [9] were considered: Liver Disorders (LIV), Breast
Cancer Wisconsin (CAN), Australian Credit (AUS), German Credit (GER),
Pima Indians Diabetes (DIA), Statlog (Heart) (HRT), Ionosphere (ION), Parkin-
sons (PKS) and Sonar (SON). All of them have been pre-processed in the same
way. Firstly, we took 30 different random permutations without replacement
for each dataset. Then, for each permutation, we took 70% of the instances for
training and 30% for testing. The variables were normalized to zero-mean and
unit standard deviation.

In all experiments we set the initial number of hidden nodes k ∈ {300, 500}.
The hidden layer parameters were sampled from an uniform distribution U [−0.1, 0.1].
Sigmoidal activation functions have been used for all neurons. We compared
AFP-ELM with a Cross-Validation Based ELM (CV-ELM). In the CV-ELM for-
mulation, the number of hidden nodes is defined using hold-out cross-validation.
Additionally, we considered the state-of-the-art machine learning algorithms
Vanilla Linear SVM (VAN-SVM), Radial Basis Function SVM (RBF-SVM) and
the Real AdaBoost (RE-ADA). For all problems the SVM hyper-parameters
were selected using 10-fold cross-validation.

Table 1 shows the average test accuracy rate (standard deviations in brackets)
over 30 repetitions.

4.1 Statistical Analysis

Based on the classification results, we are interested in testing whether consider-
ing just the input structural retention for adjusting the hidden layer dimension
leads to a poor predictive performance. By attesting the statistical equivalence
between AFP-ELM and CV-ELM in terms of accuracy, there will be a strong
evidence to conclude that the proposed pruning methodology does not lead to
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Table 1: Classification Accuracy

VAN-SVM RBF-SVM RE-ADA CV-ELM AFP-ELM

LIV 68.33(3.68) 68.59(3.77) 71.63(3.43) 67.21(4.11) 67.66(4.11)

CAN 97.29(1.04) 97.54(1.44) 95.89(1.24) 95.46(1.93) 95.38(1.48)

AUS 83.79(2.27) 84.15(2.00) 85.52(2.05) 84.15(2.25) 84.78(2.29)

GER 76.93(2.10) 75.94(1.92) 75.81(1.59) 75.33(2.39) 75.83(1.94)

DIA 76.91(2.04) 76.14(2.18) 76.19(2.39) 76.48(2.20) 76.74(2.10)

HRT 82.51(3.40) 83.13(4.28) 81.85(3.76) 82.47(4.52) 82.80(3.58)

ION 87.80(2.36) 94.84(2.07) 93.49(2.48) 84.69(3.01) 85.85(3.30)

PKS 86.21(4.08) 87.64(3.17) 88.33(3.47) 85.98(3.91) 85.80(3.89)

SON 74.89(5.11) 81.34(4.84) 81.08(5.29) 71.83(6.08) 73.98(5.53)
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● ● ●
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Fig. 1: TOST 90% confidence intervals.

loss of performance. To guide this conclusion we adopted an equivalence test
procedure, called two one-sided test (TOST) [10].

The design of an equivalence test requires the definition of an acceptance
criterion δ. It is the limit outside which the difference in mean values should
be considered statistically significant. The TOST consists of rejecting the null
hypothesis of dissimilarity, leading to conclude equivalence of performance, if
and only if a (1 − 2α)100% equal-tailed confidence interval of the differences is
completely contained in the interval [−δ,+δ].

Figure 1 shows the 90% confidence intervals of the differences in performance
between AFP-ELM and the other algorithms. The equivalence interval (shown in
dotted lines) was defined using a closed-form expression proposed by Limentani
et al. [11]. Choosing a significance level α = 0.05 and a power 1− β = 0.80, we
found δ = 1.13. Since the 90% confidence intervals for the differences between
AFP-ELM and both CV-ELM and VAN-SVM are completely contained within
[−δ,+δ], there is enough evidence, for a significance level α = 0.05, to reject the
null hypothesis of dissimilarity between those algorithms. On the other hand,
there is enough evidence to conclude that RBF-SVM and RE-ADA perform
better than AFP-ELM because the respective TOST confidence intervals besides
being strictly negative are completely outside the equivalence margin.
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5 Conclusions and Future Work

The statistical equivalence between AFP-ELM and CV-ELM assures the efficacy
of the network structure selection approach. The proposed method, unlike those
based on cross-validation, makes no use of output information to select a net-
work structure which improves the SLFN predictive performance. Nevertheless,
as confirmed by the results, by ensuring the propagation of enough input infor-
mation the AFP-ELM achieves classification performance as high as CV-ELM
does.

Therefore, we can conclude that the proposed approach is a promising alter-
native to perform the ELM pruning. Moreover, no validation set and network
parameter fitting are required to specify the hidden layer dimension.

Future work shall address generalization to multi-output problems and com-
parison with other ELM pruning methodologies.
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