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Abstract. An empirical comparative study is made of a sample of
action selection policies on a test suite of the Bernoulli multi-armed bandit
with K = 10, K = 20 and K = 50 arms, each for which we consider
several success probabilities. For such problems the rewards are either
Success or Failure with unknown success rate. Our study focusses on e-
greedy, UCBI1-Tuned, Thompson sampling, the Gittin’s index policy, the
knowledge gradient and a new hybrid algorithm. The last two are not well-
known in computer science. In this paper, we examine policy dependence
on the horizon and report results which suggest that a new hybridized
procedure based on Thompsons sampling improves on its regret.

1 Introduction

In this paper, we compare empirically a number of action selection policies on a
special case of the stochastic multi-armed bandit (M AB) problem: the Bernoulli
bandit. The bandit does not know the expectations of the reward distributions.
In order to estimate them, the rewards have to be collected from all arms. Each
time a new reward is obtained, the estimate of the corresponding distribution is
updated and the agent becomes more confident in the new estimate. Meanwhile,
the agent has to try to achieve its goal: maximising the total expected reward.
The M AB, introduced by [1], is the simplest example of a sequential decision
problem where the agent has to find a proper balance between exploitation and
exploration. The importance of the M AB lies in the exploitation-exploration
tradeoff inherent in sequential decision making. FEzploitation means that the
greedy arm is selected, i.e. the one with the highest observed average reward.
Since this is not necessarily the optimal arm, the agent may resolve to exploration
of a non-greedy arm to improve the estimate of its expected reward. An action
selection policy tells the agent which arm to pull next. Regret is the expected
loss after n time steps due to the fact that it is not always the optimal arm that
is played. Maximizing the total expected reward is equivalent to minimizing
the total expected regret. The expected regret incurred after n time steps is
defined as R(n) £ nu* — >oi | Hn, where p* is the largest true mean and w,
is the true mean of the arm pulled at time step n. This can be rewritten as
R(n) = nu* — Zszl pr E(ng), where E(nyg) is the expected number of times
that arm k is played during the first n time steps. M AB-problems can be
classified according to reward distributions of the arms, the time horizon which is
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finite or infinite, and statistical analysis are usually either done according to the
frequentist or the Bayesian paradigm. Theoretical studies prefer to minimize the
total expected regret or loss. Since theory only gives worst case upper bounds for
the this regret. The empirical performance of a policy is in most cases better than
indicated by these theoretical regret bounds. Moreover, for many action selection
policies there is no theoretical analysis. The rest of this paper is organised as
follows: In Section 2, we give a brief review of previous empirical research.
Section 3 gives the basics of the Bernoulli bandit problem. Section 4, reviews
the action selection policies considered in the empirical comparison. Section 5
describes the experimental setup and the results. Finally, the conclusion is given
in Section 6.

2 State of the Art of Empirical Comparison

A systematic evaluation by [2] compared popular action-selection policies used
in reinforcement learning but did not include the Gittins index, the knowledge
gradient and Thompson sampling. It investigated the effect of the variance of
rewards on the policy’s performance and optimally tuned the parameters of each
one. Another paper [3] gave a preliminary study of e-greedy with softmaz and
interval estimation. Unfortunately, it did not detail performance measures used,
hence the difficulty in interpretation of results. This study gives an insight into
the e-greedy (eG), used successfully in reinforcement learning, the UCB1-Tuned,
a variant of the upper confidence bound (UC B) policies that works very well in
practice, the Gittins index (GI) and the knowledge gradient (KG) relative to
Thompson sampling (7'S), a Bayesian approach to the exploitation-exploration
trade-off that recently became popular in machine learning. T'S has been shown
to provide the best alternative for M ABs with side observations and delayed
feedback. The policy is broadly applicable and easy to implement [4]. GI and
KG are quite popular in operations research but are they relatively unknown
in the machine learning community. The motivation for our empirical compar-
ison is threefold: few empirical comparisons have been done so far, theoretical
comparison is still limited in its scope in some cases, and an empirical under-
standing of the Bernoulli bandit problem is important for many applications,
e.g. optimizing the click through rate [5].

3 Bernoulli Bandit

In the Bernoulli bandit problem, the agent chooses among K different arms:
k=1,---,K. When arm k is pulled either the reward 1 for Success is received
with probability uy or 0 for Failure with probability 1 — pug. The rewards thus
have a Bernoulli distribution Ber () with unknown success probability ug. The
estimated mean after n, trials, of which s, are successes and fj are failures, is
given by jix = Skskak The optimal arm k* = argmax; j < fu is the one with
the highest true but unknown mean p* = maxi<p<g pi. It is always assumed
that the arms are sorted according to their expected rewards: pg > -+ > pp >
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-+ > [, i.e. the first arm is the optimal one and the last is the worst one. For
each non-optimal arm, i.e. k # 1, the optimality gap is defined as A, £ p* — ug
and the smallest gap A £ ming» Ay is assumed to be positive so that not more
than one arm is optimal. The greedy arm at each time step is the arm with the
highest estimated mean at that moment: k* = argmaxi <<y fik- The greedy
arm might be different from the optimal one, especially in the beginning when
too few rewards are available to have a reliable estimate of the true means.

4 Brief Description of the Action - Selection Policies

The e-Greedy (eG) selects the greedy arm k* most of the time with probability
1 — € (exploitation), while with a small probability € it selects uniformly at
random one of the K arms regardless of their estimated mean (exploration) [6].
€G works well in practice and is considered to be a benchmark.

Thompson Sampling (7'S) relies on the presence and analysis of posterior
data [7]. It maintains a prior distribution for the unknown parameters which
at each time step n, when an arm has been played and a reward obtained, is
updated using Bayes’ rule to obtain the posterior. The arm with the probability
of being the most optimal according to the current posterior distributions is then
pulled. Reward samples are taken from the distribution and the best arm played
according to the drawn parameters. T'S can be summarized as follows [5]:

Algorithm 1 Thompson Sampling

Input: Initial number of successes s = 0, the failures f; = 0, and their sum

nge = 0
for timestepn=1,--- , N do
1. For each k = 1,--- , K, sample 7 from the corresponding distribution

Beta(s, fr)
2. Play arm k* = argmax,, ri and receive reward r

3. If r =1, increment s« else increment f«

The UCB1-Tuned belongs to the class of Upper Confidence Bound (UCB)
policies that compute an index to decide deterministically which arm to pull.
UC B-policies are examples of optimism in the face of uncertainty [8]. The agent
makes optimistic guesses about the expected rewards of the arms and selects the
arm with the highest guess. UCBI-Tuned is a variant that has a finite-time regret
logarithmically bound for arbitrary sets of reward distributions with bounded
support. It takes the estimated variance V; when arm k is pulled ny into account
and can be summarized as follows [6]:
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Algorithm 2 UCBI1-Tuned
Input: Initial rp, =0
for timestepn=1,--- ,N do

ng

1. Play machine k that maximizes 7, + \/ln—” min(1/4, Vi(ng)), where 7y, is

the estimated mean reward of arm k, and update 7, with the obtained
reward 7y,

We have included T'SH which is a hybrid that starts as UCB1-Tuned which
has better initial performance and continues as 7S which outperforms UCBI-
Tuned after some time. The switching time is determined empirically and in-
creases as the number of arms increases.

The Gittins index v¢ of an arm depends on the number of times ny it has
been selected. GI relates the problem of finding the optimal policy to a stopping
time problem [9]. It determines for each arm an index vg and selects at each
time the arm with the highest value.

Algorithm 3 Finite Horizon Gittins for Bernoulli Bandits
Input: Initial successes s = 0, failures fr = 0, and their sum nj = 0.
for each time stepn=1,--- , N, do

1. Play each arm once and calculate its F'HG-index vg(sk, fx)

2. Play arm k* = argmax;, vg(sk, fr) and observe corresponding reward r.
In case of ties, choose one arm randomly among them.

3. If r = 1, increment si« else increment fx« and recalculate index
vG(Sk+, fr+) of arm k*.

The Knowledge Gradient (K G) can be adapted to handle cases where the
rewards of the arms are correlated [10]. The policy selects an arm according
to: kxg = argmaxy << g fik + (N — n)vka(k) where v (k) is the knowledge
gradient index of arm k. KG adopts the procedure that follows:
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Algorithm 4 Finite Horizon Knowledge Gradient for Bernoulli Bandits
Input: Initial s =0, fr =0 and ng = s + fx
for k=0,1,--- ,Kandn=1,--- ,N do

1. Calculate the KG-index V%Cé (Sk, fr)

2. Play arm k* = arg maxy, vk (sg, fr) and observe corresponding reward r.
In case of ties, choose one arm randomly among them.

3. If r = 1, increment sp- else increment fi« and recalculate index
VG (Ske, frr) of arm k*.

5 Empirical Analysis

The number of arms in our test suite are K = 10, K = 20 and K = 50. The
horizon ranges from N = 500 to N = 10,000. We compare the cumulative
regret of the policies discussed in Section 4 as the horizon N and the number
of arms K vary. T'SH performs relatively well for K = 10 arms with N > 100.
With K = 20, T'SH performs relatively better than the other strategies when
N > 180. GI and eG greedy surprisingly have notably lesser regret for N < 500.
TSH and TS perform best for N > 500. When N is fixed to 5000 and K is
varied, it is indeed worth noting that T'SH improves in relative performance.
TS, consistent with the results in [11], shows the best overall performance.

Simulated K = 10, 100 runs, Horizon 500 1 Simulated Performance; K = 10, 100 runs, Horizon 500 Simulated K = 10, 100 runs, Horizon 10000
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Figure 1: Figure showing the horizon N for K = 10, K = 20 and K = 50. For
more information, see the text.

6 Conclusions

The results provide a clue to an important question: At what stage does one
begin to use T'S? To achieve minimal cumulative regret, the agent can exploit
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the theoretical guarantees of the UCB1-Tuned before using T'S. Further empir-
ical studies should ascertain the time needed to initialize deterministically. The
possibility of a policy incorporating the features of UC'B and T'S to minimize
cumulative regret needs to be investigated. The analysis was done for an envi-
ronment for which the success rate was fixed - empirical tests need to be done
for scenarios where the rates change according to some stochastic process.
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