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Abstract. Finding appropriate values for the parameters of an algorithm
is an important and time consuming task. Recent studies have shown that
racing algorithms can effectively handle this task. This paper presents a
multi-objective racing algorithm called iterative S-Race (I/S-Race), which
efficiently addresses multi-objective model selection problems in the sense
of Pareto optimality. We evaluate the I/S-Race for selecting parameters
of SVMs, considering 20 widely-used classification datasets. The results
revealed that the I/S-Race is an efficient and effective algorithm for au-
tomatic model selection, when compared to a brute-force multi-objective
selection approach and the S-Race algorithm.

1 Introduction

A great number of algorithms needs adequate parameters to perform well [1].
Many researchers have faced the parameter selection as an optimization problem
and a variety number of optimization algorithms have been used [6, 5]. Besides
the cited algorithms, we highlight the Racing Algorithms (RAs)[1]. RAs are it-
erative procedures that start with a pool of candidate models. At each iteration,
the candidates are evaluated considering an objective function. If a statistical
evidence is reached, the candidates that were outperformed are eliminated from
the race.

Although parameter selection often involves more than one objective [1], most
researches used single objective RAs to refine candidate models. We highlight
that there is only one RA for Multi-Objective Model Selection (MORA), called
S-Race [7]. The S-Race demonstrated to be an efficient and effective algorithm
for model selection, when compared to a brute-force selection approach. The
main drawback of S-Race is that it can become computationally prohibitive
when the number of models to start the race is large.

This work presents a novel MORA called I/S-Race which intends to avoid
the S-Race’s weakness and be able to: 1) make the tuning tasks suitable with
a very large number of initial candidate parameter settings and, 2) allow a sig-
nificant reduction of the number of function evaluations without any major loss
in solution quality. We evaluated the proposed modification for the parameter
selection problem considering 20 classification problems, and we show the effec-
tiveness of our proposal. In Section 2 introduces the S-Race algorithm. Section
3 details the developed work. Section 4 describes the experiments and obtained
results. Finally, Section 5 presents some conclusions and the future work.
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2 MO Racing Algorithms

The S-Race algorithm inspired the creation of the proposed work. All details of
the algorithm will be presented to facilitate the understanding of the I/S-Race.
The S-Race uses the same procedure of the RA [7], it considers a pool of m
candidate models, C1, C2, ..., Cm, at the beginning of racing. At each racing’
step, the performance of each candidate is evaluated on a batch (usually one
or several test instances from the validation set) and it is represented as a per-
formance vector, where each element represents an objective. After that, we
perform a statistical test to determine whether the difference in performance
between the candidates of the pool is significant. The statistical test adopted
by the S-Race’s authors to establish dominance between a pair of candidate
models is the Sign Test (ST)[8]. Besides, in order to avoid false rejections and,
therefore, useful models may be excluded from further consideration, S-Race
employs multiple hypothesis testing of dominance relationships whenever war-
ranted. However, the multiple hypothesis test can be overly conservative. Thus,
a testing approach called Holm’s Step-Down procedure was used to control the
Family-Wise Error Rate (FWER) [9]. It guarantees that the FWER will not
exceed a user-specified threshold. In addition, it makes no assumptions on the
normality or independence of the test statistics involved [9].

Along the algorithm’ steps, when the statistical evidence becomes significant,
the outperformed candidates are excluded from the race. As we are considering a
multi-objective scenario, the process of comparing a pair of candidates works by
checking if the Pareto dominance between the candidates is statistically signifi-
cant. The models to be excluded are those, whose performances are dominated
by the corresponding performances of at least one other model in the racing
pool. At the end of the race, a Pareto-front of candidates is generated and this
Pareto may contain optimal solutions.

3 I/S-Race

In order to avoid the problems identified in S-Race, we created an iterative
racing algorithm which follows three steps. First, construct a candidate solution
based on some probability model; second, evaluate all candidates in the pool;
third, update the probability model biasing the next sampling towards the better
candidate solutions. These three steps are iterated, until some stopping criterion
is satisfied. An outline of the I/S-Race algorithm is given in Algorithm 1.

Initially, a limited number of configurations is selected by using an uniform
random sampling. Once we have an initial population, we apply the S-Race
algorithm to determine the solutions that must continue in the race. At each step
of the S-Race, the candidates are evaluated on a single instance. These solutions
are called Elite configurations Θelite, and they are used to create a probabilistic
model. So that, at each iteration, a small set of candidates is generated according
to the model. In other words, the Θelite is used to update the model in order
to bias the search around the high quality candidates. After each step, those
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Algorithm .1: I/S-Race Pseudo-code.
1: Require: I = {i1, i2, ...}

Parameter space: Θ,
Fitness Function: ζ(C, i) ∈ R,

Θ1 ∼ Sample(Θ)

Θelite :=S-Race(Θ1)

j := 2

count := 0

2: while count < |I| or |Pool| = 1 do

Θnew ∼ Sample(X,Θelite)

Θj := Θnew
⋃

Θelite

Θelite :=S-Race(Θj)

j := j + 1
count := count + 1

end

return Θelite

solutions that perform statistically worse than at least another one are discarded,
and the race continues with the remaining surviving solutions. Once S-Race
terminates, the candidates within the Θelite are then weighted according to their
ranks. We use Nelite which denotes the number of candidates that survived the
race. The weight of an elite configuration with rank rz(z = 1, ..., Nelite) is given
by:

wz =
Nelite − rz + 1

Nelite(Nelite + 1)/2
. (1)

In next iteration, the |Θk+1| −Nelite new candidates are iteratively sampled
around one of the elite configuration consider. To do so, for sampling each new
candidate configuration, first one elite solution Ez(z ∈ 1, ..., Nelite) is chosen
with a probability proportional to its weight wz and next a value is sampled
for each parameter. Here, we adopt, as sampling procedure, a d-variate normal
distribution [2]. Aiming to center the search around the promising configurations
into the Θelite, this distribution is defined on each configuration which survived
from the previous iteration.

4 Experiments

In this section, we present the experiments which evaluated the I/S-Race for the
SVM parameter problem. As a basis of comparison, we implemented the S-Race
and we used as a baseline the BFA. All algorithms were evaluated on the set of
20 different numerical classification datasets available in [4].

The algorithms performed a search in a space represented by a discrete grid of
SVM configurations. By following the guidelines provided in [3], γ can assume
values from 2−15 to 23 and the parameter C can assume values from 2−5 to
215. In this work, we decided to discretize the values of C and γ so that both
parameters assume, each one, 500 values into the interval. Thus yielding 500×
500 = 250, 000 different combinations of values. In this work, the configurations
were optimized in two aspects, success rate (SR) and the number of support
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vectors (NSV). Obviously, greater SR and lower NSV are preferred in order to
generate SVM models with high performance rate and low complexity. The
Pareto dominance was defined considering these two objectives.

In the experiments, the S-Race was executed using a pool size with all the
250, 000 models. When the validation batches are exhausted or | Pool |= 1
the algorithm stops. On the other hand, the I/S-Race was executed using a
pool size limited to 200 models and it used the same stop criterion presented in
Algorithm 1. As it can be seen, the maximum number of candidate evaluations
that the I/S-Race can perform is (200 models ×20 S-Race executions) × 20
iterations = 80, 000 evaluations, which represents, in the worst case, only 32% of
exploration in the search space. Our goal by using a reduced number of models
is to demonstrate that I/S-Race is able to identify the same Pareto-optimal
models as a BFA and be more efficient than S-Race. In order to guarantee a fair
simulation, the simulations were executed 30 times and the average results were
recorded.

4.1 Performance Metrics

Let PBFA be the final models obtained via a BFA. Similarly, let PSR and PISR be
the final models obtained via S-Race and I-S/Race respectively. Note that, in an
ideal scenario, we would like to have PALG = PBFA at a much less computational
cost than a BFA, where PALG is a general MORA (i.e. PSR or PISR). In our
experimental analysis, we considered two quantities to evaluate the quality of
PALG. These were the retention R, R =| PALG ∩ PBFA | /| PBFA |, and the
excess E, E = (1− | PALG ∩ PBFA |)/| PALG |.

As their names somewhat imply, R measures the algorithm’s ability to retain
models obtained via the BFA. On the other hand, E measures the algorithm’s
ability to correctly identify dominated models that do not appear in PBFA.
Optimally, the MORA should behave like the BFA and, therefore, exhibit R = 1
and E = 0. Apart from R and E, we also consider a measure T of I/S-Race’s
computational effort. It is defined as the ratio of total running time of the
I/S-Race over the running time of the S-Race.

4.2 Results

In order to analyze our results adequately we performed statistical analysis. As
the data does not follow a normal distribution, we applied the Wilcoxon test to
verify our hypothesis: the I/S-Race algorithm is a competitive approach for the
problem at hand. All the following analysis used this methodology.

In Figures 1 and 2 we show how the metrics R and E vary as the batches
are executed during the race. First of all, in Figure 1 we can see that the
I/S-Race has a low proportion of retention in the initial batches. It is because
the I/S-Race starts with a sample of solution which represents only 0.8% of
Θ. Hence, the probability of a solution from PBFA is in the I/S-Race’s initial
sample is very low. However, as it can be seen, the I/S-Race was able to find
solutions of the PBFA quickly. It happened due to the I/S-Race’s replacement
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procedure where dominated solutions are replaced by new solutions around the
elite configurations. Although the I/S-Race had started with a low retention
value, after the 12th iteration it achieved 100% of retention. This result overcame
the S-Race’s result which was 95% of retention.

Fig. 1: Mean of Retention × iteration considering 20 classification problems.

Fig. 2: Mean of Excess × iteration considering 20 classification problems.

In Figure 2 we also can see that the I/S-Race was able to replace most of
its Pareto’s solutions by PBFA’ solutions. In the first iteration the I/S-Race
started with no solutions from the PBFA. However, in the following iterations
the I/S-Race quickly removed undesirable solutions from its Pareto achieving
12% of excess value. The S-Race algorithm reduced drastically its Pareto’s size
but the excess value stagnated in 30%. By applying statistical tests, we confirm
that I/S-Race outperformed the S-Race regarding to E, with 95% of confidence.

Besides the analysis of E and R, we also performed a comparison between
I/S-Race and S-Race considering the computational effort T . In average, the
I/S-Race consumed only 15% of S-Race’s total consumption. Other interesting
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point is that the S-Race explored 100% of the search space, while the I/S-Race
explored 32%. This shows that an iterative racing strategy to solve the parameter
selection problem can be less computationally expensive and bring good results.

5 Conclusion

In this current work, we created an iterative MORA, I/S-Race, to select SVM
parameters. The results showed I/S-Race produced a close Pareto front as a
Brute-Force Approach (BFA) would yield, but at a fraction of computational
cost. Besides, the I/S-Race was able to generate a better Pareto front when
compared to the S-Race’s one, performing less evaluations. In future work, we
intend to create an exploration mechanism to avoid a possible stagnation in local
minima, and investigate how the I/S-Race algorithm works with many objectives
in other learning problems.
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