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Abstract. We propose an extension of the learning vector quantization frame-
work for matrix data. Data in matrix form occur in several areas like gray-scale
images, time dependent spectra or fMRI data. If the matrix data are vectorized,
important spatial information may be lost. Thus, processing matrix data in matrix
form seems to be more appropriate. However, it requires matrix dissimilarities for
data comparison. Here Schatten-p-norms come into play. We show that they can be
used in a natural way replacing the vector dissimilarities in the learning framework.
Moreover, we transfer the concept of vectorial relevance learning also to this new
matrix variant. We apply the resulting learning matrix quantization approach to the
classification of time-dependent fluorescence spectra as an exemplary real world
application.

1 Introduction
Classification of complex data is still a challenging task in machine learning. Many
methods were developed for processing vectorial data ranging from prototype based
classifiers like Support Vector Machines (SVM, [17]) or the family of Learning Vec-
tor Quantizers (LVQ, [12]) to classification trees [5]. LVQ provides an intuitive and
robust algorithmic approach based on Euclidean distance learning, frequently achiev-
ing promising results. One of the key extensions of LVQ is relevance learning, which
weights the data dimensions performance improvement [8]. It can be further improved
taking the data dimension correlations into account [18]. These methods can also be
applied to data in matrix form (matrix data), if those data are simply vectorized. How-
ever, vectorization may destroy spatial relations within a matrix, such that important
information is lost.
For this reason, we propose an extension of the LVQ framework for matrix data using
dissimilarities explicitly based on matrix norms. A standard norm applied for distances
between matrices is the Schatten-p-norm, as a natural counterpart of the lp-norms for
vectorial data. In the following we explain the modification of the LVQ required to pro-
cess matrix data and denote this new variant as Learning Matrix Quantization (LMQ).
The automatic weighting of the dimensions the classification performance improvement
is a vitally extension of the LVQ known as relevance learning [8]. In this contribution
we also discuss concepts of relevance learning in LMQ. An exemplary real world ap-
plication illustrates the usefulness of the LMQ with relevance learning.

2 Learning Vector Quantization based on lp-norms
LVQ was introduced by KOHONEN as an intuitive prototype based learning classifier for
vector data heuristically approximating a Bayes-classifier [11]. The generalized learn-
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ing vector quantization (GLVQ) model [15] is a cost function based modification of the
intuitive LVQ approximating the classification error as the objective to be minimized.
The prototypes of the GLVQ model are the set W = {wk ∈ Rn, k = 1 . . .M}. Each
data vector v ∈ V ⊆ Rn of the training data belongs to a class xv ∈ C = {1, . . . , C}.
The prototypes are labeled by yw ∈ C such that there is at least one prototype per class.
Thereby, the dissimilarities between data points v and an arbitrary prototype w are
judged in terms of a measure d based on the lp-norm ‖v −w‖p = p

√∑n
i=1 |vi − wi|

p.

In particular, we consider dp (v,w) =
(
‖v −w‖p

)p
. Further d+p (v) = dp (v,w+)

denotes the dissimilarity between the data vector v and the closest prototype w+ with
the same class label yw+ = xv, and d−p (v) = dp (v,w−) is the dissimilarity degree
for the best matching prototype w− with a class label yw− different from xv. In stan-
dard GLVQ, the squared Euclidean distance d2 (v,w) = (‖v −w‖2)

2 is used. GLVQ
maximizes the hypothesis margin d+p (v)− d−p (v) [2, 7]. The respective cost function
minimized by GLVQ is

EGLVQ (W ) =
1

2

∑
v∈V

f (µ (v)) (1)

where f is a monotonically increasing squashing function usually chosen as a sigmoid
or the identity function and

µ (v) =
d+p (v)− d−p (v)

d+p (v) + d−p (v)
(2)

is the classifier function with µ (v) ∈ [−1, 1]. Learning in GLVQ is performed by the
stochastic gradient descent learning for the cost function EGLVQ. For the more general
lp-norm, the prototype updates of w+ and w− become

∆w± ∝ ∓ ∂f

∂µ (v)
· ∂µ (v)

∂d±p (v)
·
∂d±p (v)

∂w±
(3)

with
∂d±p
∂w± are the formal derivatives of dp (v,w) [14]. Several extensions were pro-

posed to adapt this basic scheme according to specific classification tasks. A recent
overview can be found in [10]. One of the most successful modifications is relevance
learning in GLVQ (GRLVQ, [3, 8]). In the GRLVQ, the dissimilarity measure dp (v,w)
is replaced by

dp,r (v,w) = ‖r ◦ (v −w)‖pp (4)

with the relevance vector r consisting of the relevances ri with normalization∑n
i=1 |ri|

p
= 1. Here, r ◦ x denotes the Hadamard product. The relevances ri weight

each data dimension independently to improve the classifier performance and can also
be adapted by stochastic gradient learning according to

∆ri ∝ −
∂f

∂µ (v)
·
(

∂µ (v)

∂d+p,r (v)
·
∂d+p,r (v)

∂ri
− ∂µ (v)

∂d−p,r (v)
·
∂d−p,r (v)

∂ri

)
. (5)
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The GRLVQ can be further generalized when using

dp,Ω (v,w) = ‖Ω (v −w)‖pp (6)

where Ω ∈ Rm×n is a mapping matrix. Then Λ = ΩTΩ can be interpreted after
stochastic gradient learning as a classification correlation matrix combining those data
dimensions, which supports the class separabilities [18].

3 Learning Matrix Quantization based on Schatten-p-norms
Matrix data are the obvious extension of vector data. However, those data are frequently
processed applying a vectorization scheme and then utilizing of vector methods. Thus,
structural information can be destroyed by the vectorization. Therefore, we propose to
modify LVQ for matrix data V ∈ Vm,n ⊆ Rm×n. In this case, the prototype setW con-
sists of matrices Wk ∈ Rm×n. In the next step, we have to replace the lp-norm ‖v‖p
determining the dissimilarity measure dp (v,w) by a respective matrix norm. Mathe-
matically, the set Rm×n of matrices is a vector space, which can easily be equipped with
a respective matrix norm fulfilling the usual norm axioms. Examples are the maximum
norm defined as the maximum absolute value of the matrix entries or the Ky-Fan-Norm
as the sum of the firstK singular values of the matrix [9]. More sophisticated norms are
those, which additionally are consistent with the matrix multiplication, i.e. satisfying
the Cauchy-Schwarz-inequality ‖X ·Y‖ ≤ ‖X‖ · ‖Y‖ [6]. One prominent example
for these so-called sub-multiplicative norms is the Schatten-p-norm

sp (A) = p

√
tr(|A|p) (7)

where tr(•) is the trace operator [16]. For p = 2, the Schatten-p-norm reduces to
the Frobenius norm s2 (A) =

√
tr(AAT ). Schatten-p-norms are closely related to lp-

norms according to sp (A) = ‖σ (A)‖p, where σ (A) denotes the vector of the singular
values of A. Based on (7), we take

δp (V,W) = (sp (V −W))
p (8)

as a dissimilarity measure comparable to dp (v,w), which can be plugged into the cost
function (1) reading now as

EGLMQ (W ) =
1

2

∑
V∈Vm,n

f (µ (V)) . (9)

Applying the same formalism as for GLVQ, we obtain the formal update rules

∆W± ∝ ∓ ∂f

∂µ (V)
· ∂µ (V)

∂δ±p (V)
·
∂δ±p (V)

∂W± (10)

for W±. For p = 2, we simply get
∂δ±p (V)

∂W± = −2W±. Accordingly, the algorithm is
denoted as Generalized Learning Matrix Quantization (GLMQ).
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4 Relevance Learning in GLMQ
In the following we will discuss variants of relevance learning for LMQ. The obvious
counterpart to the vector variant (4) for Schatten-p-norms would be

δp,R◦ (V,W) = (sp (R ◦ (V −W)))
p (11)

with the relevance matrix R weighting independently each entry of a data matrix
V by the Hadamard product. For p = 2, this approach yields δ2,R◦ (V,W) =

tr
(

(R ◦ (V −W)) (R ◦ (V −W))
T
)

. The formal relevance update as the stochas-
tic gradient of (9) becomes

∆R ∝ − ∂f

∂µ (V)
·

(
∂µ (V)

∂δ+p,R◦ (V)
·
∂δ+p,R◦ (V)

∂R
− ∂µ (V)

∂δ−p,R◦ (V)
·
∂δ−p,R◦ (V)

∂R

)
(12)

where ∂δ2,R◦(V)
∂R = 2R ◦ (V −W) ◦ (V −W) is obtained for p = 2. It is ac-

companied by the respective prototype derivatives involving the term ∂δ2,R◦(V)
∂W± =

−2R ◦ R ◦ (V −W±) for p = 2. We denote this variant as Hadamard-Relevance-
Learning (HRL). We notice that the HRL learning applying the Frobenius-norm can be
transfered to the vectorial counterpart GRLVQ with the Euclidean norm.
Alternatively to the Hadamard product based relevance weighting introduced in (11)
we can think about the weighting

δp,R (V,W) = (sp (R · (V −W)))
p (13)

using the ordinary matrix multiplication. Here, a weighted linear relevance mixing is
applied, taking partially linear combinations of matrix entries into account. The rele-
vance update is structurally equivalent as in (12) paying attention to the new derivative
∂δp,R(V)

∂R . For p = 2 we get ∂δ2,R(V)
∂R = 2R · (V −W) · (V −W)

T . The respective
prototype update involves the term ∂δ2,R(V)

∂W± = −2RT ·R · (V −W±) and the method
is referred here as Multiplicative Relevance Learning (MRL). At this point, applying
the MRL with the Frobenius norm the spatial matrix information is taken into account.

5 Application in Time Resolved Laser induced Fluorescence Spec-
troscopy

In the last 20 years it turned out that one important way to distinguish between different
substances or to characterize a composite sample is the Time Resolved Laser induced
Fluorescence Spectroscopy (TRLFS). This method selectively excites the molecules of
a desired substance to a specified state of higher energy by a laser beam. In the relaxing
phase the molecules temporally dissipate this energy thermally or optically in terms of
auto-fluorescence. The latter leads to time-dependent emission and can be measured as
a signal reflecting the substance specific spatio-temporal characteristics of this process.
The obtained two-dimensional signal (matrix) shows the fluorescence intensity [a.u.]
dependent on the emission energy [nm] and the time [ns] after fluorescence initializa-
tion. These spectra are called Time Resolved Fluorescence Spectra (TRFS). Depending
on the experiment in use, the emission spectra of different biological compounds can
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GLVQ GRLVQ GLMQ GRLMQ (HRL) GRLMQ (MRL)

acc. in % 77.1 79.7 81.7 81.0 85.2
std. dev. 0.118 0.114 0.110 0.108 0.099

Table 1: Classification test results for the TRFLS dataset averaged over 10 repetitions of 10-fold
cross-validatations.

be quite similar and difficult to distinguish, so the important information is the time
dependence [13, p.578]. For the problem to be investigated in this study, the given
data includes only TRFS of a single biological compound at two different excitation
energies (energy level/class). The underlying assumption is that the substrate response
specifically and this behavior is reflected in the measured signal matrices [4]. However,
the specificity of the signal may be overlayed by noise. Therefore, the time-dependent
logarithmic signals are integrated with respect to time to reduce the noise. However, ac-
cording to this vectorization the time-dependent information is lost, which may contain
substantial information.
Thus we obtain for an experiment both vector and matrix data for GLVQ and GLMQ
analysis, respectively, for comparison. In particular, we have 60 data for each energy
class with a matrix resolution of 100 × 20 for emission energy and time, respectively.
For both algorithms we used only one prototype per class. All test accuracies pre-
sented as the results are obtained as average of 10 random repetitions of 10-fold cross-
validations. Further, we applied relevance learning for comparison, whereby for GLMQ
we considered both introduced variants. The results are collected in Tab. 1. We observe
that the vector variant GLVQ is slightly improved by relevance learning, as expected.
However, a similar improvement is obtained by GLMQ without relevance learning. If
relevance learning is included, a further improvement may be achieved. The improve-
ment amount depends on the kind of the relevance learning method. While application
of the HRL, which is mathematically comparable to GRLVQ, does not delivers an im-
provement, the progress becomes moderate if MRL is used. This can be dedicated to
the fact that MRL takes more structured matrix relations into account than HRL.

6 Conclusion and Future Work
In the contribution we propose the Learning Matrix Quantization framework as exten-
sion of GLVQ for matrix data. We emphasize the fact that otherwise vectorization
of matrix data may destroy structured information coded in the matrix. Further, we
discuss possibilities of relevance learning for GLMQ. So far we considered Hadamard-
relevance and (left) multipicative learning. The latter one delivers better results, which
may dedicated to the partially considered correlations within the data matrices. An ob-
vious option for future research would be to consider the right multiplicative variant
or, as a more sophisticated possibility, combining both. This leads to the QR-norms
as introduced in fMRI-analysis to relate spatio-temporal dependencies [1], but caus-
ing substantially increased numerical complexity. Another, way could be to apply also
the Kronecker-matrix-multiplication offering another kind of structural combination of
matrix entries [6, 9]. Finally, the vectorial matrix learning by GMLVQ would lead to
tensor-based relevance learning for matrix data as adequate counterpart.
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