
Autoencoding Time Series for Visualisation

Nikolaos Gianniotis1, Dennis Kügler1, Peter Tiňo2, Kai Polsterer1 and Ranjeev Misra3

1- Astroinformatics - Heidelberg Institute of Theoretical Studies

Schloss-Wolfsbrunnenweg 35 D-69118 Heidelberg - Germany

2 - School of Computer Science - The University of Birmingham

Birmingham B15 2TT - UK

3 - Inter-University Center for Astronomy and Astrophysics

Post Bag 4, Ganeshkhind, Pune-411007 - India

Abstract. We present an algorithm for the visualisation of time series.

To that end we employ echo state networks to convert time series into

a suitable vector representation which is capable of capturing the latent

dynamics of the time series. Subsequently, the obtained vector representa-

tions are put through an autoencoder and the visualisation is constructed

using the activations of the “bottleneck”. The crux of the work lies with

defining an objective function that quantifies the reconstruction error of

these representations in a principled manner. We demonstrate the method

on synthetic and real data.

1 Introduction

Time series are often considered a challenging data type to handle in machine
learning tasks. Their variable-length nature has forced the derivation of feature
vectors that capture various characteristics, e.g. [1]. However, it is unclear how
well such (often handcrafted) features express the potentially complex latent dy-
namics of time series. Time series exhibit long-term dependencies which must be
taken into account when comparing two time series for similarity. This temporal
nature makes the use of common designs, e.g. RBF kernels, problematic. Hence,
more attentive algorithmic designs are needed and indeed in classification sce-
narios there have been works [2, 3, 4] that successfully account for the particular
nature of time series.

In this work we are interested in visualising time series. We propose a fixed-
length vector representation for representing sequences that is based on the Echo
State Network (ESN) [5] architecture. The great advantage of ESNs is the fact
that the hidden part, the reservoir of nodes, is fixed and only the readout weights
need to be trained. In this work, we take the view that the readout weight vector
is a good and comprehensive representation for a time series.

In a second stage, we employ an autoencoder [6] that reduces the dimension-
ality of the readout weight vectors. However, employing the usual L2 objective
function for measuring reconstruction is inappropriate. What we are really in-
terested in is not how well the readout weight vectors are reconstructed in the L2

sense, but how well each reconstructed readout weight vector can still reproduce
its respective time series when plugged back to the same, fixed ESN reservoir.
To that end, we introduce a more suitable objective function for measuring the
reconstruction quality of the autoencoder.

495

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

2 Echo state network cost function

An ESN is a recurrent discrete-time neural network. It processes time series com-
posed by a sequence of observations which we denote by1 y = (y(1), y(2), . . . , y(T)).
The task of the ESN is given y(t) as an input to predict y(t + 1). An ESN is
typically formulated using the following two equations:

x(t+ 1) = h(ux(t) + vy(t)) , (1)

y(t+ 1) = wx(t+ 1) , (2)

where v ∈ RN×1 is the input weight, x(t) = [x1, . . . , xN] ∈ RN×1 are the
latent state activations of the reservoir, u ∈ RN×N the weights of the reservoir
units, w ∈ RN×1 the readout weights2. N is the number of hidden reservoir
units. Function h(·) is a nonlinear function, e.g. tanh, applied element-wise.
According to ESN methodology [5] parameters v and u in Eq. (1) are randomly
generated and fixed. The only trainable parameters are the readout weights w

in Eq. (2).
Training involves feeding at each time step t an observation y(t) and recording

the resulting activations x(t) row-wise into a matrix X. Typically, some initial
observations are dismissed in order to “washout” [5] the initial arbitrary reservoir
state. The following objective function ℓ is minimised:

ℓ(w) =
1

2
‖Xw − y‖2 +

1

2
λ2‖w‖2 , (3)

where λ is a regularisation term. How well vector w models y with respect to
the fixed reservoir is measured by objective ℓ. The optimal solution is w =
(XT

X + λ2
I)−1

X
T
y where I is the identity matrix. We express this as a

function g that maps time series to readout weights:

g(y) = (XT
X + λ2

I)−1
X

T
y = w . (4)

3 Vector representation for time series

Given a fixed ESN reservoir, for each time series in the dataset we determine its
best readout weight vector and take it to be its new representation with respect

to this reservoir.

3.1 ESN reservoir construction

Typically, parameters v and u in Eq. (1) are set stochastically [5]. To eliminate
dependence on random initial conditions when constructing the ESN reservoir,
we strictly follow the deterministic scheme3 in [7]. Accordingly, we fix the topol-
ogy of the reservoir by organising the reservoir units in a cycle using the same

1For brevity we assume univariate time series, i.e. y(t) ∈ R .
2Bias terms can be subsumed into weight vectors v and u but are ignored here for brevity.
3We stress that our algorithm is not dependent on this deterministic scheme for constructing

ESNs; in fact it also works with the “standard” stochastically constructed ESN type as in [5].

496

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

coupling weight a. Similarly, all elements in v are assigned the same absolute
value b > 0 with signs determined by an aperiodic sequence as specified in [7].
Further, following this methodology we determine values for a and b by cross-
validation. The combination a, b with the lowest test error is used to instantiate
the ESN reservoir that subsequently encodes the time series as readout weights.

3.2 Encoding time series as readout weights

Given the fixed reservoir, specified by a and b, we encode each time series yj in
the dataset by the readout weights wj using function g(yj) = wj (see Eq. (4)).
We emphasise that all time series yj are encoded with respect to the same fixed
reservoir. Hence dataset {y

1
, . . . ,yJ} is now replaced by {w1, . . . ,wJ}.

4 Autoencoding with respect to the fixed reservoir

The autoencoder [6] learns an identity mapping by training on targets identical to
the inputs. Learning is restricted by the bottleneck that forces the autoencoder
to reduce the dimensionality of the inputs, and hence the output is only an
approximate reconstruction of the input. By setting the number of neurons
in the bottleneck to two, the bottleneck activations can be interpreted as two-
dimensional projection coordinates z ∈ R2 and used for visualisation.

The autoencoder is the composition of an encoding fenc and a decoding fdec
function. Encoding maps inputs to coordinates, fenc(w) = z, while decoding
approximately maps coordinates back to inputs, fdec(z) = w̃. The complete
autoencoder is a function f(w;θ) = fdec(fenc(w)) = w̃, where θ are the weights
of the autoencoder trained by backpropagation.

4.1 Training mode

Typically, training the autoencoder involves minimising the L2 norm between
inputs and reconstructions over the weights θ:

1

2

J∑

j=1

‖f(wj ;θ)−wj‖
2. (5)

However, this objective measures only how good the reconstructions w̃j are
in the L2 sense. What we are really interested in is how well the reconstructed
weights w̃j are still a good readout weight vector when plugged back to the fixed
reservoir. This is actually what the objective function ℓ in Eq. (3) measures. This
calls for a modification in the objective function Eq. (5) of the autoencoder:

1

2

J∑

j=1

ℓj(f(wj ;θ)) =
1

2

J∑

j=1

‖Xjf(wj ;θ)− yj‖
2 +

1

2
λ2‖f(wj ;θ)‖

2 , (6)

where ℓj and Xj are the objective function and hidden state activations asso-
ciated with time series yj (see Eq. (3)). The weights θ of the autoencoder can
now be trained via backpropagation using the modified objective in Eq. (6).

497

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

time

no
rm

. a
m

pl
.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

time

no
rm

. a
m

pl
.

Fig. 1: Example X-ray radiation regimes β (left) and κ (right).

4.2 Testing mode

Having trained the autoencoder f via backpropagation, we would like to project
new incoming time series y∗ to coordinates z∗. To that end we first use the fixed
ESN reservoir to encode the time series as a readout weight vector g(y∗) = w

∗

(see Eq. (4)). The readout weight vector w
∗ can then be projected using the

encoding part of the autoencoder to obtain the projection fenc(w
∗) = z

∗.

5 Experiments and Results

We present results on two synthetic datasets and on a real astronomical dataset.
In all experiments we constructed the ESN reservoir deterministically according
to [7] and fixed the size of the reservoir to N = 200. We used a washout pe-
riod of 200 observations. Regularisation parameter λ for the ESNs was fixed to
10−4. The number of neurons in the hidden layers of the autoencoder was set
to 10. The proposed algorithm can handle out-of-sample data and hence apart
from projecting training data only, we also project unseen test data. We apply
no normalisation to the datasets. Moreover, we also constructed visualisations
using the popular t-SNE algorithm [8] on the raw signals. We found the visu-
alisation produced by t-SNE did not differ greatly over a range of perplexities
{5, 10, . . . , 50}.

NARMA: We generated sequences from the following NARMA classes [7] of
order 10, 20, 30, of length 800, using the following equations respectively:

y(t+ 1) = 0.3y(t) + 0.05y(t)

9∑

i=0

y(t− i) + 1.5s(t− 9)s(t) + 0.1,

y(t+ 1) = tanh(0.3y(t) + 0.05y(t)

19∑

i=0

y(t− i) + 1.5s(t− 19)s(t) + 0.01) + 0.2,

y(t+ 1) = 0.2y(t) + 0.004s(t)

29∑

i=0

y(t− i) + 1.5s(t− 29)s(t) + 0.201,

where s(t) are exogenous inputs generated independently and uniformly in the
interval [0, 0.5). These time series constitute an interesting synthetic example
due to the long-term dependencies they exhibit.

498

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

−25 −20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

train 10
train 20
train 30

(a) NARMA by t-SNE.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

train 10
train 20
train 30
test 10
test 20
test 30

(b) NARMA by our method.

−25 −20 −15 −10 −5 0 5 10 15 20 25
−15

−10

−5

0

5

10

15

train a=0.65,b=0.10
train a=0.65,b=0.95
train a=1.95,b=0.10
train a=1.95,b=0.95

(c) Cauchy by t-SNE.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

train a=0.65,b=0.10
train a=0.65,b=0.95
train a=1.95,b=0.10
train a=1.95,b=0.95
test a=0.65,b=0.10
test a=0.65,b=0.95
test a=1.95,b=0.10
test a=1.95,b=0.95

(d) Cauchy by our method.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

80

train β
train κ

(e) X-ray radiation by t-SNE.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

train β
train κ
test β
test κ

(f) X-ray radiation by our method.

Fig. 2: Colours represent classes. The proposed algorithm supports out-of-
sample visualisation, hence markers • and N are the projections of the training
and testing data respectively. Note that in the NARMA and Cauchy plots • and
N heavily overlap.

499

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

Cauchy class: We sampled sequences from a stationary Gaussian process with
correlation function given by c(xt, xt+h) = (1 + |h|a)−

a

b [9]. We generated 4
classes of such time series by the permutation of parameters a ∈ {0.65, 1.95}
and b ∈ {0.1, 0.95}. We generated from each class 100 time series of length 2000.
X-ray radiation from black hole binary: We used data from [10] concerning
a black hole binary system that expresses various types of temporal regimes
which vary over a wide range of time scales. We extracted subsequences of length
1000 from regimes β and κ that were chosen on account of their similarity (see
Fig. 1).

6 Discussion and Conclusion

We show the visualisations in Fig. 2. Unlike t-SNE which operates directly
on the raw data, the proposed algorithm can capture the differences between
the time series in the lower dimensional space. This is because our method
explicitly accounts for the sequential nature of time-series; learning is performed
in the space of readout weight representations and is guided by an objective
function that quantifies the reconstruction error in a principled manner. Of
course, the perfectly capable t-SNE is used here as a mere candidate from the
class of algorithms designed to visualise vectorial data in order to demonstrate
this issue. Moreover, we demonstrate that our method, by its very nature,
is capable of projecting also unseen hold-out data. Future work will focus on
processing large datasets of astronomical light curves.

References

[1] J. W. Richards, D. L. Starr, N. R. Butler, J. S. Bloom, J. M. Brewer, A. Crellin-Quick,
J. Higgins, R. Kennedy, and M. Rischard. On machine-learned classification of variable
stars with sparse and noisy time-series data. The Astrophysical Journal, 733(1):10, 2011.

[2] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers.
In NIPS, pages 487–493. The MIT Press, 1998.

[3] T. Jebara, R. Kondor, and A. Howard. Probability product kernels. Journal of Machine

Learning Research, 5:819–844, 2004.

[4] H. Chen, F. Tang, P. Tino, and X. Yao. Model-based kernel for efficient time series
analysis. In KDD, pages 392–400, 2013.

[5] H. Jaeger. The ‘‘echo state’’ approach to analysing and training recurrent neural networks.
Technical report, German National Research Center for Information Technology, 2001.

[6] M. A. Kramer. Nonlinear principal component analysis using autoassociative neural net-
works. AICHE Journal, 37:233–243, 1991.

[7] A. Rodan and P. Tino. Minimum complexity echo state network. IEEE Transactions on

Neural Networks, 22(1):131–144, 2011.

[8] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9:2579–2605, 2008.

[9] T. Gneiting and M. Schlather. Stochastic models that separate fractal dimension and the
hurst effect. SIAM Review, 46(2):269–282, 2004.

[10] K. P. Harikrishnan, R. Misra, and G. Ambika. Nonlinear time series analysis of the light
curves from the black hole system grs1915+105. Research in Astronomy and Astrophysics,
11(1), 2011.

500

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

	papers1-10
	ESANN2015-68_2
	ESANN2015-88_3
	ESANN2015-35_2
	ESANN2015-26_3
	ESANN2015-100_3
	ESANN2015-73_4
	ESANN2015-15_9
	ESANN2015-27_4
	ESANN2015-65_12
	ESANN2015-33_6

	papers11-20
	ESANN2015-118_2
	ESANN2015-31_3
	ESANN2015-39_3
	ESANN2015-54_5
	ESANN2015-56_3
	ESANN2015-91_4
	ESANN2015-12_3
	ESANN2015-77_3
	ESANN2015-107_2
	ESANN2015-81_2

	papers21-30
	ESANN2015-135_2
	ESANN2015-125_3
	ESANN2015-90_4
	ESANN2015-23_5
	ESANN2015-126_2
	ESANN2015-29_2
	ESANN2015-67_2
	ESANN2015-2_2
	ESANN2015-13_2
	ESANN2015-52_8

	papers31-40
	ESANN2015-104_3
	ESANN2015-83_2
	ESANN2015-114_4
	ESANN2015-14_2
	ESANN2015-130_2
	ESANN2015-106_2
	ESANN2015-87_3
	ESANN2015-132_2
	ESANN2015-109_2
	ESANN2015-99_2

	papers41-50
	ESANN2015-131_4
	ESANN2015-50_2
	ESANN2015-95_2
	ESANN2015-10_3
	ESANN2015-41_2
	ESANN2015-48_2
	ESANN2015-102_4
	ESANN2015-18_1
	ESANN2015-43_3
	ESANN2015-49_3

	papers51-60
	ESANN2015-86_3
	ESANN2015-22_2
	ESANN2015-113_3
	ESANN2015-24_5
	ESANN2015-32_2
	ESANN2015-80_2
	ESANN2015-84_2
	ESANN2015-120_2
	ESANN2015-40_2
	ESANN2015-61_5

	papers61-70
	ESANN2015-46_4
	ESANN2015-5_4
	ESANN2015-21_3
	ESANN2015-112_2
	ESANN2015-82_9
	ESANN2015-85_3
	1 Introduction
	2 Data analytics
	2.1 Measurement data analyses (Time series)
	2.2 Observation data analysis (OS labels)

	3 Selection of classifiers for the best performance
	4 Conclusions

	ESANN2015-79_3
	ESANN2015-66_10
	ESANN2015-76_4
	ESANN2015-115_2

	papers71-80
	ESANN2015-124_3
	ESANN2015-116_2
	ESANN2015-122_4
	ESANN2015-89_4
	ESANN2015-101_10
	ESANN2015-136_4
	ESANN2015-128_3
	ESANN2015-127_2
	ESANN2015-16_1
	ESANN2015-37_6

	papers81-90
	ESANN2015-97_2
	ESANN2015-134_5
	ESANN2015-74_2
	ESANN2015-75_3
	ESANN2015-137_4
	ESANN2015-28_4
	ESANN2015-64_2
	ESANN2015-108_1
	ESANN2015-58_3
	ESANN2015-7_4

	papers91-96
	ESANN2015-111_4
	ESANN2015-45_2
	ESANN2015-34_2
	ESANN2015-110_2
	ESANN2015-59_4
	ESANN2015-69_7

	proceedings2015front.pdf
	pages i-vi
	pages vii-viii
	page ix
	pages x-xii

