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Abstract. Learning sparse feature representations is a useful instru-
ment for solving an unsupervised learning problem. In this paper, we
present three labeled handwritten digit datasets, collectively called n-
MNIST. Then, we propose a novel framework for the classification of
handwritten digits that learns sparse representations using probabilistic
quadtrees and Deep Belief Nets. On the MNIST and n-MNIST datasets,
our framework shows promising results and significantly outperforms tra-
ditional Deep Belief Networks.

1 Introduction

Deep Learning has gained popularity over the last decade due to its ability to
learn data representations in an unsupervised manner and generalize to unseen
data samples using hierarchical representations. The most recent and best-
known Deep learning model is the Deep Belief Network [1]. In [2], Deep Belief
Networks have been used for modeling acoustic signals and have been shown
to outperform traditional approaches using Gaussian Mixture Models for Auto-
matic Speech Recognition (ASR). Deep Belief Network is trained one layer at a
time using Restricted Boltzmann Machines (RBM). A sparse feature learning al-
gorithm for Deep Belief Networks was proposed in [3]. However, their work was
focused on maximization of information content in the learned representations.
Restricted Boltzmann Machines, on the other hand, are trained by minimizing
a contrastive term in the loss function.

The main contributions of our work are twofold – (1) We first present three la-
beled handwritten digit datasets, collectively called n-MNIST, created by adding
white gaussian noise, motion blur and reduced contrast to the original MNIST
dataset[4]. (2) Then, we present a framework for the classification of handwrit-
ten digits that a) learns probabilistic quadtrees from the dataset, b) performs
a Depth First Search on the quadtrees to create sparse representations in the
form of linear vectors, and c) feeds the linear vectors into a Deep Belief Net-
work for classification. On the MNIST and n-MNIST datasets, our framework
shows promising results and significantly outperforms traditional Deep Belief
Networks.

367

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



2 Datasets1

We evaluate our framework on the MNIST dataset[4] of handwritten digits as
well as three artificial datasets collectively called n-MNIST (noisy MNIST) cre-
ated by adding – (1) additive white gaussian noise, (2) motion blur and (3) a
combination of additive white gaussian noise and reduced contrast to the MNIST
dataset. Some of the images from these datasets are shown in Figure 1.

(a) MNIST with Additive
White Gaussian Noise

(b) MNIST with Motion
Blur

(c) MNIST with AWGN
and reduced contrast

Fig. 1: Example images from the n-MNIST dataset created as part of the ex-
periments

3 Probabilistic Quadtrees for Learning Sparse Represen-
tations

We propose a novel technique based on probabilistic quadtrees that can reduce
the dimensionality of a dataset in a probabilistically sound way. We learn the
structure of the quadtree from the samples of a dataset. A quadtree splits each
image into four equi-sized windows, and then performs a test of homogeneity on
each image window. If a block meets the homogeneity criterion, it is not divided
any further into sub-windows. If otherwise, it does not meet the criterion, it is
again subdivided into four sub-windows, and the test criterion is in turn applied
to those smaller windows. This process is repeated on all the sub-windows until
each meets the homogeneity criterion. The resulting data structure can have
windows of several different sizes. The homogeneity criterion can be defined
as follows - Split a block if the maximum value of the block elements minus
the minimum value is greater than a threshold τ . Threshold τ is specified as
a value between 0 and 1 (chosen here as 0.27 by experiments). Denoting the
homogeneity criterion for sample d as Hd, this can be formally presented as
follows:

1The datasets are available at the web link [5] along with a detailed description of the
methods and parameters used to create them
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Hd =

true, if max
i∈d

(i)−min
i∈d

(i) ≤ τ | τ ∈ [0, 1]

false, if max
i∈d

(i)−min
i∈d

(i) > τ | τ ∈ [0, 1]
(1)

Alternatively, the homogeneity criterion can be considered proportional to
the standard deviation of the probability distribution of the dataset. So, higher
the standard deviation, higher the average texture of a block and higher is the
probability of the block being divided into sub-blocks.

In the learned quadtree structure for a given dataset, a node is divided into
smaller windows if the homogeneity criterion is not met for any sample in the
dataset. The node is not divided into smaller windows only if the homogeneity
criterion is met by all samples in the dataset.

We can consider each node of the quadtree as a binary random variable X,
which can take one of two values 1 or 0 based on whether it is divided into smaller
windows or not. So, for a total of N samples in dataset D, the random variable
X may take on one of N + 1 possible split state values: one value for each of the
samples not meeting the homogeneity criterion, and one value indicating that
all samples meet the homogeneity criterion. This can be formally presented as
follows:

X =

{
1, if ∃d ∈ D | D = {d0, d1, d2, ..., dN} ∩ {Hd = false}
0, if ∀d ∈ D | D = {d0, d1, d2, ..., dN} ∩ {Hd = true}

(2)

Once learned, the probabilistic quadtree helps in reducing the dimensionality
of the data, which captures the statistics of the training samples in the dataset.
A depth first search on the learned tree yields a linear vector that is then fed
into an unsupervised learning framework.

4 Deep Belief Network for Feature Learning

Deep Belief Network (DBN) consists of multiple layers of stochastic, latent vari-
ables trained using an unsupervised learning algorithm followed by a supervised
learning phase using Feedforward Backpropagation Neural Networks. In the un-
supervised pre-training stage, each layer is trained using a Restricted Boltzmann
Machine (RBM). Once trained, the weights of the DBN are used to initialize the
corresponding weights of a Neural Network [6]. A Neural Network initialized in
this manner converges much faster than an otherwise uninitialized one. A DBN
is a graphical model [7] where neurons of the hidden layer are conditionally
independent of each other given a particular configuration of the visible layer
and vice versa. A DBN can be trained layer-wise by iteratively maximizing the
conditional probability of the input vectors or visible vectors given the hidden
vectors and a particular set of layer weights. As shown in [1], this layer-wise
training can help in improving the variational lower bound on the probability
of the input training data, which in turn leads to an improvement of the over-
all generative model. We first provide a formal introduction to the Restricted
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Boltzmann Machine. The RBM can be denoted by the energy function:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

hjwi,jvi (3)

where, the RBM consists of a matrix of layer weights W = (wi,j) between the
hidden units hj and the visible units vi. The ai and bj are the bias weights for
the visible units and the hidden units respectively. The RBM takes the structure
of a bipartite graph and hence it only has inter-layer connections between the
hidden or visible layer neurons but no intra-layer connections within the hidden
or visible layers. So, the visible unit activations are mutually independent given
a particular set of hidden unit activations and vice versa [8]. Hence, by setting
either h or v constant, we can compute the conditional distribution of the other
as follows:

P (hj = 1|v) = σ(bj +
m∑
i=1

wi,jvi) (4)

P (vi = 1|h) = σ(ai +
n∑

j=1

wi,jhj) (5)

where, σ denotes the log sigmoid function:

f(x) =
1

1 + e−x
(6)

The training algorithm maximizes the expected log probability assigned to
the training dataset D. So if the training dataset D consists of the visible vectors
v, then the objective function is as follows:

argmax
W

E
[∑
v∈V

logP (v)
]

(7)

A Restricted Boltzmann Machine is trained using a Contrastive Divergence
algorithm [8]. Once trained the DBN is used to initialize the weights of a feed-
forward backpropagation neural network that is then used for classification.

5 Results and Comparative Studies

Various network architectures along with the test set error for the traditional
DBN framework and the probabilistic quadtree based framework on the MNIST
and the three n-MNIST datasets are listed in Tables 1 and 2. From the Tables,
it is evident that our best performing network outperforms the best traditional
Deep Belief Network on both the MNIST and n-MNIST datasets. On the MNIST
dataset, our best network exhibits a relative improvement of ∼25% over the
traditional DBN. For the n-MNIST dataset, it provides a relative improvement
of ∼36% for Additive White Gaussian Noise (AWGN), ∼26% for Motion Blur
and ∼12% for AWGN and Reduced contrast.
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MNIST n-MNIST with AWGN
Architecture Test Error Test Error Test Error Test Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 4.64 2.93 89.95 13.41
100-100 3.01 2.45 91.43 12.01
150-150 2.34 2.21 89.95 13.49
200-200 2.08 1.96 88.49 10.56
250-250 1.93 1.83 88.49 13.00
300-300 2.02 1.80 68.18 11.24
350-350 1.96 1.74 90.31 13.15
400-400 1.95 1.67 49.27 10.96
450-450 1.93 1.38 32.26 12.62
500-500 1.86 1.43 69.68 9.93

Table 1: Test Error of a traditional DBN and our framework with various archi-
tectures on MNIST and n-MNIST with AWGN

n-MNIST with n-MNIST with AWGN
Motion Blur and Reduced Contrast

Architecture Test Error Test Error Test Error Test Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 5.64 4.17 10.21 9.29
100-100 4.68 3.31 9.43 9.21
150-150 3.99 3.29 16.40 9.00
200-200 3.74 3.03 15.57 8.79
250-250 3.74 2.60 52.31 8.94
300-300 3.50 3.04 32.29 8.28
350-350 3.82 2.91 86.31 8.90
400-400 3.74 3.01 68.78 8.31
450-450 3.91 2.75 51.32 8.36
500-500 3.66 2.83 68.19 7.84

Table 2: Test Error of a traditional DBN and our framework with various archi-
tectures on n-MNIST with Motion Blur; and with AWGN and Reduced Contrast

6 Discussion and Future Directions

Our learning framework based on probabilistic quadtrees significantly outper-
forms traditional Deep Belief Networks on both the MNIST and n-MNIST
datasets. Probabilistic quadtrees help in generating sparse representations for
the dataset and significantly improve the discriminative power of the framework.

We plan to investigate the use of various pooling techniques like SPM [9] as
well as certain sparse representations like sparse coding [10] to handle n-MNIST.
Hierarchical representations like Convolutional DBN [11] are other useful can-
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didates for investigation. We believe that n-MNIST will help researchers better
apply and extend the research on understanding representations for noisy object
recognition datasets.
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