
Morisita-Based Feature Selection for Regression

Problems

Jean Golay, Michael Leuenberger and Mikhail Kanevski

University of Lausanne - Institute of Earth Surface Dynamics (IDYST)
UNIL-Mouline, 1015 Lausanne - Switzerland

Abstract. Data acquisition, storage and management have been im-
proved, while the factors of many phenomena are not well known. Conse-
quently, irrelevant and redundant features artificially increase the size of
datasets, which complicates learning tasks, such as regression. To address
this problem, feature selection methods have been proposed. This research
introduces a new supervised filter based on the Morisita estimator of in-
trinsic dimension. The algorithm is simple and does not rely on arbitrary
parameters. It is applied to both synthetic and real data and a comparison
with a wrapper based on extreme learning machine is conducted.

1 Introduction

In data mining, it is often not known a priori what features (or input variables)
are truly necessary to capture the main characteristics of a studied phenomenon.
This lack of knowledge implies that many of the considered features are irrele-
vant or redundant. They artificially increase the dimension E of the Euclidean
space in which the data are embedded (E equals the number of features). This is
a serious matter, since fast improvements in data acquisition, storage and man-
agement cause the number of redundant and irrelevant features to increase. As
a consequence, unless the sample size N grows exponentially with E, the curse
of dimensionality is likely to reduce the overall accuracy of the results yielded
by any learning algorithm. Besides, large N and E are also difficult to deal with
because of computer performance limitations.

In regression, these issues are often addressed by implementing supervised
feature selection methods [1]. They can be broadly subdivided into filters and
wrappers. Filters do not use any evaluation criterion involving a learning ma-
chine, while wrappers do. Besides, both approaches can be used with search
strategies, since an exhaustive exploration of the 2E − 1 models (all the combi-
nations of features) is often computationally infeasible. Greedy strategies, such
as Sequential Forward Selection (SFS), can be distinguished from randomized
ones.

The present paper deals with a new SFS filter algorithm relying on Morisita-
based estimates of the intrinsic dimension, M , of data [2, 3]. The Morisita
estimator of Intrinsic Dimension (ID) is closely related to the fractal theory and
M (≤ E) can be interpreted as the dimension of the space where the points of
a dataset truly reside (i.e. the data manifold [4]). The proposed algorithm is
supervised and designed for regression problems. It does not make use of any
threshold, unlike what can be found in related works [5, 6], and it keeps the
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simplicity of the Fractal Dimension Reduction (FDR) algorithm introduced in
[7]. The Morisita estimator of ID is presented in Section 2. Section 3 introduces
the Morisita-based filter and Section 4 is devoted to numerical experiments con-
ducted on both synthetic and real data. A comparison with a wrapper combining
Extreme Learning Machine (ELM) [8] and an exhaustive search strategy is also
carried out.

2 The Morisita Estimator of Intrinsic Dimension

The Morisita estimator of Intrinsic dimension, Mm, is based on the multipoint
Morisita index Im,δ [2, 3] (named after Masaaki Morisita who proposed the first
version of the index). Im,δ is computed by superimposing a grid of Q quadrats of
diagonal size δ onto the data points. It measures how many times more likely it
is that m (m ≥ 2) points selected at random will be from the same quadrat than
it would be if the N points of the studied dataset were distributed according to
a random distribution generated from a Poisson process (i.e. complete spatial
randomness). The formula is the following:

Im,δ = Qm−1

∑Q
i=1 ni(ni − 1)(ni − 2) · · · (ni −m+ 1)

N(N − 1)(N − 2) · · · (N −m+ 1)

where ni is the number of points in the ith quadrat. For a fixed value of m, Im,δ

is calculated for a chosen range of δ values. If a dataset follows a fractal behavior
(i.e. is self-similar), the functional relationship of the plot relating log (Im,δ) to
log (1/δ) is linear and the slope is defined as the Morisita slope Sm. Finally, Mm

is expressed as:

Mm = E −
(

Sm

m− 1

)

In practice, each variable is rescaled to [0, 1] and the R chosen δ can be replaced
with the edge lengths, �, of the quadrats. In the rest of this paper, only M2 will
be used and it will be computed with an algorithm called Morisita INDex for
Intrinsic Dimension estimation (MINDID) [3] whose complexity is O(N ∗E ∗R).

3 The Morisita-based Filter for Regression Problems

The Morisita-Based Filter for Regression (MBFR) relies on three observations
following from the works by Traina et al. [7] and De Sousa et al. [5]:

1. Given an output variable Y generated from k relevant and non-redundant
input variables X1, . . ., Xk and let ID(·) denote the Intrinsic Dimension
(ID) of a dataset, one has that:

ID(X1, . . . , Xk, Y )− ID(X1, . . . , Xk) ≈ 0

2. Given i irrelevant input variables I1, . . ., Ii completely independent of Y,
one has that:

ID(I1, . . . , Ii, Y )− ID(I1, . . . , Ii) ≈ ID(Y )
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Algorithm 1 MBFR

INPUT: a dataset A with f features F1,...,f and one output variable Y ; a
vector L of values �; two empty vectors of length f : SelF and DissF for
storing, respectively, the name of the selected features and the dissimilarities;
an empty matrix Z for storing the selected features. OUTPUT: SelF and
DissF .

1: Rescale each feature and Y to [0, 1].
2: for i = 1 to f do
3: for j = 1 to (f + 1− i) do
4: ID(Z, Fj , Y )− ID(Z, Fj) = Dissimilarity (MINDID is used with L)
5: end for
6: Store in SelF [i] the name of the Fj yielding the lowest Dissimilarity.
7: Store this Dissimilarity in DissF [i].
8: Remove the corresponding Fj from A and add it into Z.
9: end for

3. Given a randomly selected subset of X1, . . ., Xk of size r with 0 < r < k
and k > 1, j redundant input variables J1, . . ., Jj related to some or all of
X1, . . ., Xr and all the i irrelevant input variables I1, . . ., Ii, one has that:

ID(X1, . . . , Xr, J1, . . . , Jj , I1, . . . , Ii, Y )

−ID(X1, . . . , Xr, J1, . . . , Jj , I1, . . . , Ii) ≈ H

where H ∈ ]0, ID(Y )[ and H decreases to 0 as r increases to k.
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Fig. 1: (left) The functional relationship between the dependent variable Y and
the relevant features X1 and X2; (right) MBFR applied to 1 simulation of the
synthetic dataset.

The difference ID(features, Y )−ID(features) can thus be suggested as a way
of measuring the dissimilarity (i.e the independence) between Y and the selected
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Fig. 2: MBFR applied to simulations of the synthetic dataset with different
levels of Gaussian noise (100 simulations per level).

features, among which only the relevant ones (i.e. the non-redundant features on
which Y depends) contribute to reducing the dissimilarity. Based on that prop-
erty, MBFR (See Algorithm 1) aims at retrieving the relevant features available
in a dataset by sorting each subset of variables according to its dissimilarity
with Y . MBFR implements a SFS search strategy and relies on the MINDID
algorithm [3] for the computation of M2. Its complexity is O(N ∗ E3 ∗R).

4 Experimental Study

4.1 Synthetic Data

The synthetic dataset was constructed as follows. An output variable Y was
generated from two uniformly distributed input variables X1 and X2 (see Figure
1) by using an Artificial Neural Network (ANN) (one hidden layer of ten neurons,
a sigmoid transfer function, randomly generated weights ∈ [−2, 2], no biases).
Three redundant (J) and three irrelevant (I) input variables were also included:
J3 = log(X1 + 5), J4 = X2

1 − X2
2 , J5 = X4

1 − X4
2 , I6 is uniformly distributed,

I7 = log(I6 + 5) and I8 = I6 + I7. Simulations were generated with N = 10000
and with the same ANN weights.

The MBFR algorithm was applied with �−1 ranging from 5 to 20. The
right panel of Figure 1 shows the result of one simulation run. X1 and X2

are easily identified as the relevant features, since they reduce the dissimilarity
from ID(Y ) to about 0. The same conclusion can be drawn from Figure 2
which presents the effect of three levels of Gaussian noise on three sets of 100
simulations. The minimum dissimilarity increased with the standard deviation
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of the noise. Eventually, if Y is shuffled (i.e. the dependences with any feature is
broken), the dissimilarities stay close to ID(Y ) as shown in Figure 3. In Figures
2 and 3, the names of the redundant and irrelevant features were replaced with
letters IJ because their rank was not stable over the simulations. It is also worth
mentioning that the corresponding dissimilarities do not fluctuate around ID(Y )
and this might be related to the increasing dimensionality of the considered space
and to the way the dissimilarities are computed (i.e. a subtraction between the
ID of two datasets embedded in spaces of different E).
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Fig. 3: MBFR applied to 100 simulations of the synthetic data with shuffled Y.

4.2 Real Data

The concrete dataset, downloaded from the UCI machine learning repository,
was used. The MBFR algorithm was applied with �−1 ranging from 2 to 13 and
the selected features turned out to be (see Figure 4): Age, Blast FS, Cement
and Superplasticizer. The computation lasted 1.85 seconds using R (Intel Core
i7-3770 CPU @ 3.40 GHz with 16.0 GB of RAM under Windows 8).

In order to compare and assess the results obtained with the MBFR algo-
rithm, a wrapper method based on ELM [8] and relying on an exhaustive search
was applied: (a) a 5-fold cross-validation was used: 1 fold was iteratively allo-
cated to the set of validation and the remaining 4 folds were assigned to the
training set; (b) for each of the 2E − 1 subsets of features, ELM models with a
number of hidden nodes (the only hyper-parameter of ELM) varying from 1 to 40
were trained and evaluated; (c) the model showing the minimal Mean Squared
Error (MSE) was selected. By iterating this process (a to c) 20 times, a total of
100 evaluations of the 2E − 1 subsets of features were carried out and the rank
of the subset selected by the MBFR algorithm was recorded (for the 100 evalu-
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ations). The resulting histogram is displayed in Figure 4 and it highlights that
the considered subset of features is one of the best from an ELM perspective.

5 Conclusion

MBFR combines the advantages of the existing algorithms of fractal feature se-
lection, while it is designed for regression tasks. It was applied to both synthetic
and real datasets. The results are coherent with those yielded by the ELM-based
wrapper and with the work by Traina et al. [7] and De Sousa et al. [5]. In future
research, MBFR will be applied to challenging datasets and the problem of the
sensitivity of the algorithm to the choice of the scale range will be addressed.
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Fig. 4: (left) MBFR applied to the concrete dataset; (right) Histogram of the
model ranks based on ELM.
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