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Abstract. This paper proposes a new Genetic Algorithm for Multi-Label 
Correlation-Based Feature Selection (GA-ML-CFS). This GA performs a global 
search in the space of candidate feature subsets, in order to select a high-quality 
feature subset that is used by a multi-label classification algorithm – in this work, 
the Multi-Label k-NN algorithm. We compare the results of GA-ML-CFS with the 
results of the previously proposed Hill-Climbing for Multi-Label Correlation-
Based Feature Selection (HC-ML-CFS), across 10 multi-label datasets.  

1. Introduction 
A classification algorithm learns, from a training set, a model representing predictive 
relationships between an instance’s features and its class label(s). The model is then 
used to predict the class label of previously unseen instances in the test set. In 
conventional single-label classification, each instance in the data set is associated with 
just one class label. By contrast, we address a more difficult multi-label classification 
problem, where each instance can be associated with multiple class labels. 
 Classification datasets often have a large number of features, so feature 
selection is often performed in a data pre-processing step, in order to improve 
predictive performance and eliminate irrelevant and/or redundant features [1]. 
 In this paper we propose a new Genetic Algorithm for Multi-Label Correlation-
Based Feature Selection (GA-ML-CFS), and compare its performance against the 
Hill-Climbing for Multi-Label Correlation-Based Feature Selection (HC-ML-CFS) 
method proposed in [2], across 10 multi-label classification datasets. 
 This paper is organized as follows. Section II reviews background on feature 
selection. Section III describes the proposed GA-ML-CFS method. Section IV reports 
the computational results. Section VI concludes the paper and mentions future work. 

2. Background on Feature Selection 
There are two broad approaches for feature selection in a data preprocessing step: the 
wrapper and the filter approaches, which are characterized by whether or not 
(respectively) the feature selection method uses the classification algorithm to 
measure the quality of candidate feature subsets. Here we use the filter approach, 
which is much faster and more scalable than the wrapper approach. 
 There are relatively few published studies on filter feature selection methods for 
multi-label classification. Many methods first transform the multi-label problem into a 
single-label one and then use a single-label feature selection method [3,4,5,6,7]. Other 
works propose feature selection methods that directly cope with multi-label data 
[8,9,10]. Unlike these works, the new feature selection method proposed here is based 
on the Correlation-based Feature Selection (CFS) method [11], which has been 
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recently extended for Multi-label CFS (ML-CFS) in [2,12,13]. ML-CFS searches for 
features highly correlated with class labels (i.e. relevant features) and features with 
low correlations among themselves (to avoid the selection of redundant features). 
ML-CFS uses equation (1) to evaluate the quality of a candidate feature subset F – 
where L is the set of class labels, k is the number of features in F, r is Pearson’s linear 
correlation coefficient, 𝑟!" is the average correlation between each feature in F and 
each class label in L, and 𝑟!!  is the average correlation over all pairs of features in F. 
When computing the terms 𝑟!" and 𝑟!!, we use the absolute value of the correlation 
coefficient, which improved the predictive performance of ML-CFS in [2]. 
   

  𝑀𝑒𝑟𝑖𝑡(𝐹) =
𝑘𝑟!"

𝑘 + 𝑘(𝑘 − 1)𝑟!!
 

3. A New Genetic Algorithm for Multi-Label Feature Selection 
We propose a Genetic Algorithm (GA) for Multi-Label Correlation-Based Feature 
Selection (GA-ML-CFS). GAs are stochastic global search methods inspired by the 
process of natural selection [14]. There are many GAs proposed as a feature selection 
method for single-label classification [15,16,17] but developing a GA for multi-label 
classification seems an unexplored research topic so far.  
 In the proposed GA-ML-CFS each individual (candidate feature subset) is 
represented by a string of n bits, where n is the number of features. The i-th bit – i = 
1,..,n – takes the value 1 or 0 to indicate whether or not a feature is selected, 
respectively. Each individual is evaluated by a fitness function, given by equation (1).  
At each generation (iteration), individuals are selected by a combination of an elitism 
operator and the tournament selection operator, which selects individuals with a 
probability proportional to their fitness (quality) values. The selected individuals then 
undergo uniform crossover and bit-flip mutation. The selection, crossover and 
mutation operators are conventional GA operators [14]; the main novelty of the 
proposed GA is the multi-label fitness function.  
 The parameter settings of GA-ML-CFS in our experiments were: population size 
= 200, number of generations = 100, elitist set size = 4, tournament size = 2, gene 
crossover probability = 0.5, gene mutation probability = 0.01 – see also Section 4. 

4. Computational Results  
In our experiments, we used 10 multi-label classification datasets (shown in Table I), 
which were obtained from the multi-label dataset repository website 
(http://mulan.sourceforge.net/datasets.html) [18]. We used the pre-defined training 
and test set for each dataset in the above website. In all experiments we use, as a 
multi-label classification algorithm, the well-known Multi-Label k-Nearest Neighbor 
(ML-kNN) algorithm [19]. Before running GA-ML-CFS on these 10 datasets, we 
performed some preliminary experiments to optimize its parameters, using four 
datasets (CAL500, Scene, Emotions, Yeast, also from the above repository) that are 
different from the datasets in Table I. This makes it fair to compare the results of GA-
ML-CFS with the results of the hill-climbing-based HC-ML-CFS (which has no 
parameter to be optimized), and evaluates the robustness of the GA’s parameters. 

(1) 

286

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



Since all datasets have a very large number of features, we use a univariate filter 
approach to select the N features with highest average correlation with class labels, 
before running the GA. The motivation for this initial filtering approach – which is 
common in GAs for feature selection [15,16,17] – is to reduce the number of features 
given as input to the GA when the number of features is very large, to reduce the 
processing time and improve the scalability of GA-ML-CFS. We did experiments 
with four different numbers of features selected by the univariate filter method (which 
are also the GA’s individuals’ length): N = 100, 200, 300, 400. Tables 2–5 (each for a 
different individual length) show the predictive accuracy of ML-kNN when using 
features selected by the proposed GA-ML-CFS and by the HC-ML-CFS described in 
[2]. Due to the complexity of evaluating multi-label classification algorithms, Tables 
2–5 report results for five measures of multi-label predictive accuracy [20,21]: 
Average Precision (Avg.Prec.) is to be maximized; while the others – Coverage, 
Hamming Loss (Ham. Loss), One error and Ranking Loss – are to be minimized. 
 

Dataset Instances Features Labels 
Enron 1702 1001 53 
Medical 978 1449 45 
Business 11314 21924 30 
Art 7484 23146 26 
Education 12030 27534 33 
Recreation 12828 30324 22 
Health 9205 30635 32 
Enter.ment 12730 32001 21 
Computer 12444 34096 33 
Science 6428 37187 40 

Table 1: Dataset characteristics 

 
Dataset Avg. Prec. Coverage Ham. Loss One Error Rank Loss Avg.Rank 

GA HC GA HC GA HC GA HC GA HC GA HC 
Enron 0.58(1) 0.57(2) 13.59(2) 13.55(1) 0.06(2) 0.06(1) 0.4(2) 0.39(1) 0.1(1) 0.11(2) 1.6 1.4 
Medical 0.77(1) 0.77(2) 3.32(2) 3.20(1) 0.02(1) 0.02(2) 0.3(1) 0.3(2) 0.05(2) 0.05(1) 1.4 1.6 
Business 0.87(1) 0.87(2) 2.39(1) 2.42(2) 0.03(1) 0.03(2) 0.13(1) 0.14(2) 0.04(1) 0.04(2) 1 2 
Art 0.53(1) 0.52(2) 5.3(1) 5.31(2) 0.06(1) 0.06(2) 0.58(1) 0.61(2) 0.15(2) 0.13(1) 1.2 1.8 
Educat. 0.54(2) 0.54(1) 3.91(2) 3.87(1) 0.04(2) 0.04(1) 0.6(1) 0.6(2) 0.09(2) 0.09(1) 1.8 1.2 
Recreat. 0.53(2) 0.54(1) 4.33(2) 4.33(1) 0.06(2) 0.06(1) 0.6(2) 0.6(1) 0.16(1) 0.16(2) 1.8 1.2 
Health 0.63(1) 0.63(2) 3.8(1) 3.80(2) 0.05(1.5) 0.05(1.5) 0.48(2) 0.48(1) 0.07(1) 0.07(2) 1.3 1.7 
Entertai. 0.57(2) 0.58(1) 3.2(2) 3.19(1) 0.06(2) 0.06(1) 0.58(2) 0.57(1) 0.12(2) 0.12(1) 2 1 
Comput. 0.62(2) 0.63(1) 4.38(2) 4.20(1) 0.04(2) 0.04(1) 0.45(1) 0.45(2) 0.09(2) 0.09(1) 1.8 1.2 
Science 0.45(1) 0.42(2) 6.86(1) 7.46(2) 0.03(1) 0.04(2) 0.7(1) 0.72(2) 0.14(1) 0.15(2) 1 2 
Avg.RK 1.40 1.60 1.60 1.40 1.55 1.45 1.40 1.60 1.50 1.50 1.49 1.51 

Table 2: Predictive accuracies for GA-ML-CFS and HC-ML-CFS (individual length = 100) 

All GA results are an average over 5 runs with a different random seed used to 
create the initial population in each run. In Tables 2–5, the number in brackets after 
each measure is the rank (“1” is better than “2”) of each method (GA or HC) for each 
dataset and for each accuracy measure. The last pair of columns reports the average 
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rank of each method across all five accuracy measures, for each dataset. The last row 
reports the average rank for each column (across all 10 datasets).  

 
Dataset Avg. Prec. Coverage Ham. Loss One Error Rank Loss Avg.Rank 

GA HC GA HC GA HC GA HC GA HC GA HC 
Enron 0.59(1) 0.59(2) 13.35(1) 13.38(2) 0.06(2) 0.06(1) 0.39(2) 0.37(1) 0.1(1) 0.1(2) 1.4 1.6 
Medical 0.81(2) 0.82(1) 2.96(2) 2.77(1) 0.02(2) 0.02(1) 0.24(2) 0.22(1) 0.05(2) 0.04(1) 2 1 
Business 0.87(1) 0.87(2) 2.3(1) 2.36(2) 0.03(1) 0.03(2) 0.12(1) 0.14(2) 0.04(1) 0.04(2) 1 2 
Art 0.53(1) 0.52(2) 5.33(1) 5.39(2) 0.06(1) 0.06(2) 0.59(1) 0.6(2) 0.15(1) 0.15(2) 1 2 
Educat. 0.55(2) 0.55(1) 3.9(2) 3.84(1) 0.04(2) 0.04(1) 0.6(2) 0.59(1) 0.09(2) 0.09(1) 2 1 
Recreat. 0.57(2) 0.57(1) 4.14(2) 4.12(1) 0.06(2) 0.06(1) 0.54(1) 0.54(2) 0.15(2) 0.15(1) 1.8 1.2 
Health 0.68(1) 0.67(2) 3.4(1) 3.44(2) 0.04(1) 0.04(2) 0.4(1) 0.42(2) 0.06(1) 0.07(2) 1 2 
Entertai. 0.61(1) 0.6(2) 3.06(1) 3.12(2) 0.05(1) 0.05(2) 0.52(1) 0.53(2) 0.11(1) 0.11(2) 1 2 
Comput. 0.64(1) 0.63(2) 4.23(1) 4.28(2) 0.04(2) 0.04(1) 0.44(1) 0.45(2) 0.09(1) 0.09(2) 1.2 1.8 
Science 0.46(1) 0.42(2) 6.77(1) 7.4(2) 0.03(1) 0.04(2) 0.68(1) 0.71(2) 0.13(1) 0.15(2) 1 2 
Avg.RK 1.30 1.70 1.30 1.70 1.50 1.50 1.30 1.70 1.30 1.70 1.34 1.66 

Table 3: Predictive accuracies for GA-ML-CFS and HC-ML-CFS (individual length= 200) 

 
Dataset Avg. Prec. Coverage Ham. Loss One Error Rank Loss Avg.Rank 

GA HC GA HC GA HC GA HC GA HC GA HC 
Enron 0.59(1) 0.58(2) 13.25(2) 13.22(1) 0.06(1) 0.06(2) 0.38(2) 0.38(1) 0.1(1) 0.1(2) 1.4 1.6 
Medical 0.8(2) 0.81(1) 3.04(2) 2.85(1) 0.02(1) 0.02(2) 0.25(2) 0.24(1) 0.05(2) 0.04(1) 1.8 1.2 
Business 0.87(1) 0.87(2) 2.32(1) 2.37(2) 0.03(1) 0.03(2) 0.13(1) 0.14(2) 0.04(2) 0.04(1) 1.2 1.8 
Art 0.53(1) 0.51(2) 5.29(1) 5.49(2) 0.06(1) 0.06(2) 0.59(1) 0.62(2) 0.15(1) 0.15(2) 1 2 
Educat. 0.55(2) 0.56(1) 3.86(2) 3.77(1) 0.04(2) 0.04(1) 0.6(2) 0.58(1) 0.09(2) 0.09(1) 2 1 
Recreat. 0.58(2) 0.59(1) 4.05(2) 3.99(1) 0.05(2) 0.05(1) 0.54(2) 0.53(1) 0.15(2) 0.14(1) 2 1 
Health 0.68(2) 0.68(1) 3.41(2) 3.36(1) 0.04(1) 0.04(2) 0.41(1) 0.41(2) 0.06(2) 0.06(1) 1.6 1.4 
Entertai. 0.61(2) 0.61(1) 3.05(2) 3.02(1) 0.06(2) 0.05(1) 0.52(1) 0.53(2) 0.11(2) 0.11(1) 1.8 1.2 
Comput. 0.64(2) 0.64(1) 4.15(1) 4.19(2) 0.04(1) 0.04(2) 0.44(1) 0.44(2) 0.09(1) 0.09(2) 1.2 1.8 
Science 0.46(1) 0.42(2) 6.78(1) 7.41(2) 0.03(1) 0.04(2) 0.67(1) 0.72(2) 0.13(1) 0.15(2) 1 2 
Avg.RK 1.60 1.40 1.60 1.40 1.30 1.70 1.40 1.60 1.60 1.40 1.50 1.50 

Table 4: Predictive accuracies for GA-ML-CFS and HC-ML-CFS (individual length= 300) 

In general, GA-ML-CFS obtained better predictive accuracy (lower average rank) 
than HC-ML-CFS in the experiments with individual lengths of 100 and 200 (Tables 
2 and 3). The difference was very small in Table 2, but larger in Table 3, where the 
GA obtained the better (lower) rank of 1.33, versus 1.66 for the HC. When the 
individual length is 300 (Table 4), the GA and the HC have the same average rank. 
When the individual length is 400 (Table 5), the HC obtained the better rank of 1.42, 
versus 1.58 for the GA. The right part of Table 6 summarizes these results. 

The left part of Table 6 compares the average number and percentage of features 
selected by each method across all datasets for each individual length. Note that, as 
the individual length (number of input features) increases, the number of features 
selected by GA-ML-CFS increases much faster than the number selected by HC-ML-
CFS. One possible explanation for this is that the hill-climbing search is more 
“conservative” than the GA search, as the HC method adds one feature at a time at the 
current candidate feature subset. Once a good feature subset S1 has been found at 
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some iteration, the discovery of a much larger feature subset S2 in a later iteration 
would occur only if each of the extra features had a quality high enough to increase 
the value of Equation (1). The GA search is less “conservative”, since the crossover 
operator may add many features at a time to a given individual. Thus, given a feature 
subset S1, the GA can produce a much larger subset S2 without requiring that each 
extra feature have a high quality by itself. In theory, this gives the GA the advantage 
of coping better with feature interactions, but this comes with the disadvantage that 
the set of extra features added to produce a larger feature subset in a single crossover 
operation may include some features that are not very relevant for class prediction. 
This suggests that an interesting future research direction would be to extend the 
GA’s fitness function with another criterion, introducing some selective pressure to 
reduce the size of the selected feature subset, although this has to be done carefully in 
order to avoid reducing the quality of the selected feature subset at the same time. 
 
Dataset Avg. Prec. Coverage Ham. Loss One Error Rank Loss Avg.Rank 

GA HC GA HC GA HC GA HC GA HC GA HC 
Enron 0.58(2) 0.59(1) 13.48(2) 13.32(1) 0.06(1) 0.06(2) 0.38(2) 0.38(1) 0.1(2) 0.1(1) 1.8 1.2 
Medical 0.8(2) 0.81(1) 3.12(2) 2.88(1) 0.02(1) 0.02(2) 0.25(2) 0.24(1) 0.05(2) 0.05(1) 1.8 1.2 
Business 0.87(1) 0.87(2) 2.3(1) 2.39(2) 0.03(1) 0.03(2) 0.13(1) 0.14(2) 0.04(1) 0.04(2) 1 2 
Art 0.52(1) 0.52(2) 5.29(1) 5.41(2) 0.06(1) 0.06(2) 0.6(1) 0.61(2) 0.15(1) 0.15(2) 1 2 
Educat. 0.55(2) 0.56(1) 3.89(2) 3.8(1) 0.04(2) 0.04(1) 0.6(2) 0.57(1) 0.09(2) 0.09(1) 2 1 
Recreat. 0.57(2) 0.59(1) 4.11(2) 4.01(1) 0.06(2) 0.05(1) 0.55(2) 0.53(1) 0.15(2) 0.14(1) 2 1 
Health 0.7(2) 0.71(1) 3.29(2) 3.18(1) 0.04(2) 0.04(1) 0.39(2) 0.37(1) 0.06(2) 0.06(1) 2 1 
Entertai. 0.62(2) 0.62(1) 2.99(2) 2.97(1) 0.06(2) 0.05(1) 0.52(2) 0.51(1) 0.11(2) 0.11(1) 2 1 
Comput. 0.65(1) 0.64(2) 4.13(1) 4.19(2) 0.04(2) 0.04(1) 0.43(1) 0.43(2) 0.09(1) 0.09(2) 1.2 1.8 
Science 0.46(1) 0.42(2) 6.82(1) 7.41(2) 0.03(1) 0.04(2) 0.67(1) 0.71(2) 0.13(1) 0.15(2) 1 2 
Avg.RK 1.60 1.40 1.60 1.40 1.50 1.50 1.60 1.40 1.60 1.40 1.58 1.42 

Table 5: Predictive accuracies for GA-ML-CFS and HC-ML-CFS (individual length= 400) 

 
Individ. 
Length 

Num. of selected features Average predictive accuracy rank 
GA-ML-CFS HC-ML-CFS GA-ML-CFS HC-ML-CFS 

100 34.86 (34.86%) 31.80 (31.80%) 1.49 1.51 
200 65.82 (32.91%) 46.50 (23.25%) 1.34 1.66 
300 98.30 (32.77%) 56.40 (18.80%) 1.50 1.50 
400 136.08 (34.02%) 68.10 (17.03%) 1.58 1.42 

Table 6: Results Summary: average number and percentage of selected features across 10 
datasets and average accuracy ranks across 10 datasets and 5 predictive accuracy measures 

5. Conclusion 
We proposed the GA-ML-CFS (Genetic Algorithm for Multi-Label Correlation-based 
Feature Selection) method for selecting features to be used as input by a multi-label 
classification algorithm. We performed experiments comparing the results of GA-
ML-CFS against ML-CFS based on hill-climbing search (HC-ML-CFS), and the GA 
has obtained somewhat higher predictive accuracies, overall. However, the number of 
features selected by the GA tends to rapidly increase with an increase in the problem 
size (number of input features), whilst the HC is less sensitive to this issue.  
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In future work, we plan to develop a MOGA (Multi-Objective GA) that will use a 
fitness function with two objectives: the classification accuracy (to be maximized) 
and the number of selected features (to be minimized). This should help to prevent the 
GA from selecting too many features. 
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to the ‘CoSMoS’ cluster, funded by EPSRC grants EP/E049419/1 and EP/E053505/1. 
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