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Abstract. In Machine Learning (ML), the learning process of an algo-
rithm given a set of evidences is studied via complexity measures. The
way towards using ML complexity measures in the Human Learning (HL)
domain has been paved by a previous study, which introduced Human
Rademacher Complexity (HRC): in this work, we introduce Human Algo-
rithmic Stability (HAS). Exploratory experiments, performed on a group
of students, show the superiority of HAS against HRC, since HAS allows
grasping the nature and complexity of the task to learn.

1 Introduction

Exploring the way humans learn is a major interest in Learning Analytics (LA)
and Educational Data Mining (EDM) [1]. New advances in LA enable mea-
suring, collecting and analyzing data about learners and their contexts: this
allows exploring people’s learning behavior, for example through state-of-the-
art Machine Learning (ML) approaches, opening the door towards optimized
and personalized education [2, 3].

While Analytics and Data Mining can effectively support learning through
data analysis tools, recent works in cognitive psychology [4, 5, 6, 7] highlight
how cross-fertilization between Machine Learning (ML) and Human Learning
(HL) can also be widened to the extents of how people tackle new problems and
extract knowledge from observations. For example, inquiry-guided HL focuses
on contexts where learners are meant to discover knowledge rather than passively
memorizing [8, 9]: the instruction begins with a set of observations to interpret,
and the learner tries to analyze the data or solve the problem by the help of the
guiding principles [10], resulting in a more effective educational approach [11].
Measuring the ability of a human to capture information rather than simply
memorizing is thus key to optimize HL. In this sense, the parallelism with ML is
straightforward: in this framework, several approaches in the last decades dealt
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with the development of measures to assess the generalization ability of learning
algorithms, in order to minimize risks of overfitting.

As a consequence, the mash-up of ML studies on generalization ability es-
timation and HL has been proposed: for example, Zhu et al. [7] proposed the
application of Rademacher Complexity (RC) approaches [12] to estimate human
capability of extracting knowledge (Human Rademacher Complexity – HRC).
Unfortunately, (H)RC requires that a set of models is aprioristically defined,
which includes the models to be explored by the learner (being either an al-
gorithm or a human) [13]. While this hypothesis is not always satisfied by ML
methods (e.g. by k-Nearest Neighbors [14]), aprioristically defining a list of alter-
native models for humans is an even tougher task [15]. This leads to formulating
further assumptions [7], which do not often hold in practice.

As an alternative, we propose to exploit Algorithmic Stability (AS) [16, 13] in
the HL framework to compute the Human Algorithmic Stability (HAS), which
does not rely on the definition of a set of models and does not require any
additional assumptions. By comparatively benchmarking HRC and HAS, ex-
periments performed by analyzing the way a group of students learns tasks of
different difficulties show that using HAS leads to beneficial outcomes in terms
of value of the performed analysis. In particular, HAS is influenced by the na-
ture and the complexity of the task to learn. Moreover, contrarily to HRC, HAS
is also able to capture the fast-learning ability of a human when dealing with
simple tasks: this allows providing new perspectives with reference to human
tendency to overfit training data depending on the nature of the problem faced.
These results can thus play, in a virtuous loop cycle between ML and HL, as a
measure of the propensity of the learner towards inquiry-based learning versus
simple memorization.

2 Rademacher Complexity (RC) and Algorithmic Stabil-
ity (AS) in Machine Learning (ML)

Let X and Y ∈ {±1} be, respectively, an input and an output space. We
consider m sets Dm = {S1n, . . . ,Smn } of n labeled i.i.d. data Sjn : {Zj

1 , . . . , Z
j
n}

(j = 1, ...,m), where Zj
i∈{1,...,n} = (Xj

i , Y
j
i ), where Xj

i ∈ X and Y j
i ∈ Y, sampled

from an unknown distribution µ. A learning algorithm A is used to train a model
f : X → Y ∈ F based on Sjn.

In this framework, the ability of A to identify an effective f is assessed
through complexity measures, which indicate the tendency of the models to
overfit the training data. Rademacher Complexity (RC) is a now-classic measure,
used for this purpose:

R̂n(F) = 1
m

∑m
j=1

[
1− inff∈F

2
n

∑n
i=1 `(f, (X

j
i , σ

j
i ))

]
(1)

where `(·, ·) is the hard loss function which counts the number of misclassified
examples [13], while σj

i (with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}) are ±1 valued

random variable for which P[σj
i = +1] = P[σj

i = −1] = 1/2 [12]. In other words,
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the complexity of the model is assessed through its capacity in learning noise
(i.e. random labels); however, the set of functions F must be aprioristically
defined, and this is not always possible in practice.

As an alternative, Algorithmic Stability (AS) has been recently proposed: it
measures the ability of A to select similar models, even though training data
are (slightly) perturbed. This guarantees that the algorithm is actually learning
from data, and it is not simply memorizing them. In order to measure AS,

we define the sets Sj\in = Sjn \ {Z
j
i }, where the i-th sample is removed. AS is

computed as [16, 13]:

Ĥn (A) = 1
m

∑m
j=1 |`(ASj

n
, Zj

n+1)− `(ASj\i
n
, Zj

n+1)|. (2)

It is worth underlining that AS does not require F to be known, while only the
algorithm A must be defined to compute the measure.

3 From Machine Learning (ML) to Human Learning (HL):
Experimental Design & Results

A previous work [7] depicts an experiment targeted towards identifying the Hu-
man Rademacher Complexity (HRC), which is defined as a measure of the
capability of a human to learn noise, thus avoiding to overfit data. Given
the drawbacks of RC with respect to AS, highlighted in the previous section,
we built on the experiments and experience of these activities to design and
carry out a new experiment, which aims at estimating the average HRC and
Human Algorithmic Stability (HAS) for a class of students: the latter is de-
fined as a measure of the capability of a learner to understand a phenomenon,
even when he is given slightly perturbed observations. We target comparing
the two quantities and verifying which one is the most informative for get-
ting more insights on HL: 307 undergraduate students were involved through
questionnaires, designed as described in the following. Filled questionnaires
were collected and analyzed: (anonymized) examples can be found at http:

//smartlab.ws/files/questionnaires.zip.
In particular, we followed the approach designed in [7] and we modified it

where appropriate to estimate HAS. The first step consists in defining the phe-
nomena and the rules, that must be grasped by students. Two domains are de-
fined: Shape and Word. The former domain consists of 321 computer-generated
3D shapes, parametrized by α ∈ [−8,+8], such that a small value of α leads to
spiky shapes, while a large α allows to obtain smooth ones. A label is assigned
to each shape, and two problems are defined in accordance with ad hoc rules to
depict tasks of increasing complexity: Shape Simple (SS), where Y = +1 if α ≤ 0
and Y = −1 otherwise; Shape Difficult (SD), where Y = +1 if −4 ≤ α ≤ 4 and
Y = −1 otherwise. The Word domain, instead, consists of 321 words1, sampled
from the Wisconsin Perceptual Attribute Ratings Database [17], which includes
words rated by 350 undergraduates based on their emotional valence. Two rules

1Having to deal with Italian students only, words have been translated into Italian.
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are defined for labelling data, analogously to [7] and to what done above: in
Word Simple (WS), words are sorted by their length and the 161 longest ones
are assigned Y = +1; in Word Difficult (WD), words are sorted by their emotion
valence and the 161 most positive ones are assigned Y = +1. The probability
distribution throughout both domains is uniform.

HRC requires two assumptions to be made: every individual picks up the
model from the same set of alternatives (i.e., in ML terms, from the same F);
every individual always performs at his best (i.e. in ML terms, the error is
minimized). In order to compute HRC, the same procedure of [7] has been
adopted. In particular, two domains are identified – Rademacher Shape (RS)
and Rademacher Word (RW), while labels are not contemplated when deriving
HRC.

A new experimental protocol has been designed, instead, for HAS. With
reference to the defined domains and since labels influence the estimation of HAS,
four different tasks are identified: Word Simple (SWS), Word Difficult (SWD),
Shape Simple (SSS) and Shape Difficult (SSD). Given a domain and a rule,
a dataset {Zj

1 , . . . , Z
j
n} with j = {1, . . . , 307}, is sampled for each participant.

The size of the sets are varied for different individuals, and randomly chosen
in n ∈ {3, 5, 7, 10, 15, 20, 25}. Moreover, for computing HAS, a further pattern
Zj
n+1 = {Xj

n+1, Y
j
n+1} is also selected (as indicated by Eq. (2)).

Students have been initially asked to complete the questionnaires according
to the following protocol: (i) 2 minutes are given to students in order to capture
the underlying rule from n− 1 labeled samples {Zj

1 , . . . , Z
j
n−1}; (ii) participants

perform a filler task consisting of some two-digit addition / subtraction questions,
to reduce risks of memorization; (iii) student must classify Xj

n+1; (iv) students
are asked to describe the rule they identified, and to estimate the confidence
of their decision; (v) the complete set {Zj

1 , . . . , Z
j
n} is given to students (in

shuffled order), but participants are not aware that n− 1 samples are the same
as step (i); (vi) another filler task is provided; (vii) sample Xj

n+1 is given to the
individuals for labeling; (viii) participants are asked again for describing the rule
they inferred. Unfortunately, a first trial, conducted on 70 volunteers, showed
that students were able to mentally link steps (iii) and (vii). We thus modified
the protocol, so that the eight phases are equally split (i÷iv and v÷viii) between
two students. Thanks to this procedure, all quantities, necessary to compute
HAS, can be derived.

In the end, each experiment was consisted of two subjects, who worked on
a unique combination of {SSSn−1 , SWDn−1, SSDn−1, SWSn−1, RWn} and
{SSSn , SWDn, SSDn, SWSn, RSn}, for the different set sizes. For each student,
it is thus possible to compute R̂n(F) and Ĥn (A). In order to obtain further
insights, it is also possible to compute the average empirical error, performed by
all students when classifying samples at steps (iii) and (vii):

L̂n (A) = 1
m

∑m
j=1 `(ASj

n
, Zj

n+1). (3)

Figure 1(a) shows the trend of L̂n (A), as n is varied: as expected from ML
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Fig. 1: Experimental results, as n is varied.

theory, L̂n (A) is smaller for simple tasks than for difficult ones in HL as well.
However, analogies end here. While the error of ML models usually decreases
with n, results on HL are characterized by oscillations, even for small variations
of n. This can be due to the small sample considered, and especially to the
fact that only a subset of the students are willing to perform at their best
when completing the questionnaire: these phenomena could be explored, in the
future, by analyzing the filler tasks, in order to verify the students’ level of
attention. Another result is in contrast with what expected from the ML point of
view: oscillations in terms of L̂n (A) mostly (and surprisingly) affect simple tasks
(SSS, SWS). Moreover, errors performed with reference to the Shape domain are
generally smaller than those recorded for the Word domain. Broadly speaking,
humans are not learning algorithms, thus more vertical HL interpretations of
these effects by experts will be necessary.

Figure 1(b) presents the results obtained when computing Ĥn (A) as n is
varied. Despite having being designed in the ML framework, it is worth high-
lighting how HAS is able to grasp the nature and peculiarities of HL. As a matter
of fact, we note that: simple tasks are characterized by smaller values of Ĥn (A);
HAS for the Shape domain is generally smaller than for the Word domain. Both
results are in accordance with the trend of the error, registered in HL, and the
nature of the analyzed phenomenon: in this sense, HAS offers interesting in-
sights on HL, because it raises questions about the ability of humans to learn in
different domains.

Finally, Figure 1(c) shows the trend for R̂n(F). Contrarily to HAS, HRC
is not able to grasp the complexity of the task, since labels are neglected when
computing R̂n(F). Moreover, the two assumptions, underlying the computation
of HRC, do not hold in practice: in fact, the learning process of an individual
should be seen as a multifaceted problem, rather than a collection of factual and
procedural knowledge, targeted towards minimizing a “cost” [15]. This leads to
less significative results with respect to HL: HRC decreases with n (as in ML),
and this trend is substantially uncorrelated with the errors for the considered
domains.

Future evolutions will allow to analyze students’ level of attention through
the results of the filler task, and to include other heterogeneous domains (e.g.
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mathematics) and additional rules, of increasing complexity: this will enable
to more carefully explore how the domain and the task complexity influence
Human Algorithmic Stability, and how this is related to the error performed on
classifying new samples. Furthermore, we will make the dataset of anonymized
questionnaires publicly available.

References

[1] Z. Papamitsiou and A. Economides. Learning analytics and educational data mining in
practice: A systematic literature review of empirical evidence. Educational Technology &
Society, 17(4):49–64, 2014.

[2] G. Siemens and P. Long. Penetrating the fog: Analytics in learning and education.
Educause Review, 46(5):30–32, 2011.

[3] M. Bienkowski, M. Feng, and B. Means. Enhancing teaching and learning through educa-
tional data mining and learning analytics: An issue brief. US Department of Education,
Office of Educational Technology, pages 1–57, 2012.

[4] J. Feldman. Minimization of boolean complexity in human concept learning. Nature,
407(6804):630–633, 2000.
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