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Abstract. Binarization techniques are widely used to solve multi-class
classification problems. These techniques reduce the classification com-
plexity of multi-class classification problems by dividing the original data
set into two-class segments or replicas. Then a set of simpler classifiers
are learnt from the two-class segments or replicas. The outputs from these
classifiers are combined for final classification. Binarization can improve
prediction accuracy when compared to a single classifier. However, to be
declared as a superior technique, binarization techniques need to prove
themselves in the context of ensemble classifiers such as Random Forest.
Random Forest is a state-of-the-art popular decision forest building al-
gorithm which focuses on generating diverse decision trees as the base
classifiers. In this paper we evaluate one-vs-all binarization technique in
the context of Random Forest. We present an elaborate experimental re-
sult involving ten widely used data sets from the UCI Machine Learning
Repository. The experimental results exhibit the effectiveness of one-vs-all
binarization technique in the context of Random Forest.

1 Introduction

Nowadays the amount of data is increasing at an astonishing pace; so much that
90% of the data in the world today have been generated in the previous two
years [1]. The large volume of data amplifies the need for developing sophis-
ticated means for automatic knowledge discovery. Data mining is the method
of automatically discovering useful information from large data sets [2]. Classi-
fication and clustering are two popular data mining tasks that are applied for
knowledge discovery and pattern recognition.

Classification aims to generate a function that maps the set of non-class at-
tributes {A1, A2, ..., Am} to a predefined class attribute C [2] and the function
is commonly known as the classifier. There are different types of classifiers that
includes Decision Trees [3], [4], [5], Artificial Neural Networks [6], and Support
Vector Machines [7]. Among these classifiers, decision trees are rigorously used
in the real world scenario as they can be broken down to generate logic rules
to infer valuable knowledge [8]. Due to their immense popularity, decision trees
with better prediction accuracy can render huge impact on many sensitive ap-
plication areas such as medical diagnosis.

In general, it is easier to induce a decision tree to distinguish between two
class values (known as binary-class values) than more than two class values
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(known as multi-class values) since the decision boundaries for the binary-class
values are simpler compared to that of multi-class values [9]. This is why bi-
narization techniques are applied on the multi-class problems to decompose the
original problem into easy to solve binary classification problem [10].

A lot of binarization techniques can be found in the literature [11]. Most
of them can be categorized into two groups called “One-Vs-One”(OVO) and
“One-Vs-All”(OVA) as described in the following:

1. OVO technique resolves the multi-class problem in such a way that the
training data set is partitioned into several segments where each segment
contains a distinct pair of class values. If there is C number of distinct
class values then the total number of segments will be: C(C − 1)/2.

2. OVA technique resolves the multi-class problem in such a way that the
training data set is replicated into several data sets where each replica
contains one original class vale and all other class values of the training
data set are replaced as “O”. Thus, if there is C number of distinct class
values then the total number of replicas will be: C. The number of records
in each replica is the same as the original training data set.

After binarization, for both OVO and OVA technique we get one classifier (deci-
sion tree for this paper) from each of the segments/replicas of the training data
set. Thus, the outputs from more than one decision trees need to be combined
for final classification.

Decision forest is essentially an ensemble of decision trees where an individ-
ual decision tree acts as the base classifier and the classification is performed by
taking a vote based on the predictions made by each decision tree of the decision
forest [2]. A decision forest overcomes some of the shortcomings of a decision
tree. A decision tree is entirely formed from the training data set. This enables
a decision tree to have remarkable classification performance on the examples
(records) of the training data set. However, the classification performance on
the seen examples does not necessarily get translated into predicting the class
values of the unseen (unlabelled) records of the testing data set. Decision tree
in particular, lacks in generalization performance. Nevertheless, different deci-
sion trees have different generalization errors. Thus the combination of several
decision trees can help overcoming the generalization errors of a single decision
tree.

We argue that after binarization the solution in effect becomes an ensemble
of classifiers which has advantages over a single classifier. Thus, to determine
whether binarization techniques are in general preferable or not we need to eval-
uate the techniques in the context of ensembles. In literature, Fürnkranz [10]
compared the suitability of OVO strategies for decision trees and decision lists
within Bagging and Boosting. In this paper, for the first time we evaluate OVA
binarization technique in the context of state-of-the-art ensemble of decision
trees namely - Random Forest [12].
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2 OVA Binarization in the Context of Random Forest

For our experimentation we choose to generate 100 decision trees for Random
Forest which is large enough to ensure convergence of ensemble effect [14]. Thus,
when building 100-tree Random Forest without applying any binarization tech-
nique, we need to generate 100 different bootstrap samples. It is worthy to
mention that decision tree is very sensitive to the training data set [2]. That
is - if the training data set is slightly perturbed by adding or removing some
records or attributes, the resultant decision tree can be very different. Thus,
the bootstrap samples can render significant diversity among the trees which
in turn increases the ensemble accuracy. To be fair in comparison, we have to
generate around 100 trees for Random Forest even when OVO or OVA technique
is applied. Let us assume that we have a data set with five (05) different class
values. If we want to binarize a bootstrap sample of the data set using OVO
technique we get approximately 5 × (5 − 1)/2 = 10 segments and thus 10 trees
from a single bootstrap sample. As a result, only 10 different bootstrap sam-
ples of the original training data set can be used which can significantly trim
down diversity. Moreover, OVO binarization generates data segments from the
bootstrap samples in such a way that there is only a pair of distinct class values
is present in each data segment. The records containing other class values are
excluded. This phenomenon significantly reduces the size of the data segment
compared to the bootstrap sample whose size is equal to that of the original
training data set. On the other hand, in our example when OVA is applied on a
bootstrap sample we get exactly 5 replicas and thus 5 trees from a single boot-
strap sample. Thus, we can use 20 different bootstrap samples. We admit that
in this case also diversity can be degraded yet compared to OVO it would be
significantly higher. More importantly, OVA generates replicas with the same
size of a bootstrap sample where each replica contains one original class value
and all other class values of the training data set are replaced as “O”. For the
reasons stated above, we find OVA is more applicable for one to one comparison
in the context of Random Forest.

3 Experimental Results

We conduct an elaborated experimentation on ten (10) data sets with more than
two class (multi-class) values covering almost every well known multi-class data
sets from the UCI Machine Learning Repository [15]. The data sets used in the
experimentation are listed in Table 1. We generate 100 trees for both Regular
Random Forest (R RF) and One-Vs-All Random Forest (OVA RF). Majority
voting is used to aggregate the ensemble results. All the results reported in this
paper are obtained using 10-fold-cross-validation (10-CV) for every data set.
The best results are emphasized through bold-face.

Ensemble accuracy is one of the most important performance indicators for
any decision forest algorithm. From Table 2, we see that the OVA RF outper-
forms the R RF for eight (08) out of ten data sets considered (including one
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Table 1: Description of the data sets

Data Set Name Attributes Records Distinct
Class Values

Balance Scale 04 625 3
Car Evaluation 06 1728 4
Dermatology 34 366 6
Ecoli 08 336 8
Glass Identification 10 214 7
Hayes-Roth 05 160 3
Iris 04 150 3
Lenses 04 24 3
Soybean (Small) 35 47 4
Statlog (Vehicle) 18 946 4

Table 2: Ensemble Accuracies (in percentage)

Data Set Name R RF OVA RF

Balance Scale 83.8670 82.5640
Car Evaluation 74.2340 81.6600
Dermatology 85.5890 92.6780
Ecoli 84.5240 84.5240
Glass Identification 66.0940 73.6390
Hayes-Roth 63.3840 70.3080
Iris 95.3330 94.6660
Lenses 71.6670 78.3330
Soybean (Small) 99.0910 100.0000
Statlog (Vehicle) 71.1760 73.5320

Average 79.4959 83.1904

tie). On an average OVA RF achieve a significant improvement in prediction
accuracy (83.1904%) over that of the R RF (79.4959%). Another important
observation to note from Table 3 is that OVA RF performs far better with the
data sets having more distinct class values (more than 3 in this case).

We already know the decision boundaries to distinguish the binary-class val-
ues are simpler compared to that of multi-class values. Thus decision trees
generated following binarization should be simpler and generated faster. From
Table 3 we find that trees generated from OVA RF have comparatively less nodes
and depth. This implies that the rules generated from OVA RF are more con-
cise, and thus more preferable [16]. As expected, trees generated from OVA RF
takes comparatively less time than R RF (see Table 4).
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Table 3: Tree Structure

Average Tree Nodes Average Tree Depth

Data Set Name R RF OVA RF R RF OVA RF

Balance Scale 103.5000 66.1717 3.0160 2.0111
Car Evaluation 129.5560 42.0550 4.8650 2.1050
Dermatology 17.6960 10.0304 3.5190 1.9441
Ecoli 43.4420 10.4885 7.9280 3.3712
Glass Identification 46.3860 13.9000 8.6480 4.0284
Hayes-Roth 14.8810 14.1778 2.6040 2.4626
Iris 10.0400 7.1859 3.8080 2.5778
Lenses 7.1740 5.7788 2.4010 2.0374
Soybean (Small) 6.4750 5.1700 1.8480 1.4020
Statlog (Vehicle) 150.5020 65.4100 14.3900 10.7180

Average 52.9652 24.0368 5.3027 3.2658

4 Conclusion

The main contribution of this paper is to evaluate the OVA randomization tech-
nique in the context of Random Forest. From our study, we find that OVA
randomization has a great potential in the context of Random Forest. In fu-
ture, we plan to apply OVA randomization methods on some of the latest forest
building algorithms such as Rotation Forest [17].
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