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Abstract. Model selection is a key step in learning from data, because it
allows to select optimal models, by avoiding both under- and over-fitting.
However, in the Big Data framework, the effectiveness of a model selec-
tion approach is assessed not only through the accuracy of the learned
model but also through the time and computational resources needed to
complete the procedure. In this paper, we propose two model selection ap-
proaches for Least Squares Support Vector Machine (LS-SVM) classifiers,
based on Fully-empirical Algorithmic Stability (FAS) and Bag of Little
Bootstraps (BLB). The two methods scale sub-linearly respect to the size
of the learning set and, therefore, are well suited for big data applica-
tions. Experiments are performed on a Graphical Processing Unit (GPU),
showing up to 30x speed-ups with respect to conventional CPU-based im-
plementations.

1 Introduction

In the Big Data Era [1], transforming large amounts of data into actionable
knowledge in a feasible time frame is a key task to map large investments in
database storage into an actual advantage for final users. Learning algorithms
must then be able to handle big data by optimizing economic sustainability
aspects, which result in resource, time, and accuracy constraints [2, 3, 4, 5].
Two challenges consequently arise: (i) to train and select accurate models (i.e.
to choose an effective model selection strategy); (ii) to deploy such strategy onto
computing systems, which allow optimizing cost-to-performance ratio [3].

Concerning challenge (i), in the supervised binary classification learning
framework, model selection addresses the problem of choosing the most suitable
classifier given the available data, by properly tuning one or more hyperparam-
eters in order to avoid either under- or overfitting [6]. For this purpose, in this
paper we exploit two recent theoretical results, namely Bag of Little Bootstraps
(BLB) [7, 8] and Fully-empirical Algorithmic Stability (FAS) [9, 10, 11]. They
both allow to effectively implement model selection strategies with memory re-
quirements and computational complexity proportional to

√
n, where n is the

number of available samples, so ensuring sub-linear scalability.
Concerning challenge (ii), distributing the learning effort on different ma-

chines is fundamental to allow limiting the computational burden related to the
analysis of large data volumes. Nevertheless, costs could be remarkably affected
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by the exploitation of several parallel workstations. In order to avoid giving
up parallelism while limiting costs, in the last years Graphical Processing Units
(GPUs) have been exploited to speed-up computations [12, 13, 14, 15, 16], as
they allow to optimize the cost-to-performance ratio with respect to conventional
CPUs.

In this paper, we deal with both challenges. In particular, we consider one
state-of-the-art classification algorithm, namely the Least Squares Support Vec-
tor Machine (LS-SVM) [17], and we propose an implementation strategy for BLB
and FAS model selection approaches on GPUs. Comparative benchmarks on real
world datasets, performed on both GPUs and conventional CPUs, show the ef-
fectiveness of the proposed methods: GPU-based implementations can achieve a
30x speed-up with respect to their CPU-based counterparts. In particular, FAS
results to require less resources than BLB, without affecting the performance of
the final classifier.

2 FAS and BLB Model Selection Strategies

Let Sn : {z1, . . .,zn} be a set of n i.i.d. patterns zi=(xi, yi), where xi ∈ Rd
and yi ∈ {±1}, sampled from an unknown distribution µ. A learning algorithm
A, characterized by a set of hyperparameters H, allows training a model f =
A(Sn,H) from the available data. The objective of a model selection procedure is
to identify the best configuration H∗ for the model hyperparameters. This task
can be accomplished by finding the model that minimizes the generalization
error of f , namely the error that f will perform on all data generated by µ.
Unfortunately, the generalization error cannot be computed in practice, since
µ is unknown: different approaches have been thus proposed to estimate the
performance of a model based on a finite dataset [6].

One recently proposed procedure, the Fully-empirical Algorithmic Stability
(FAS), relies on measuring the ability of an algorithm to select similar models,
even if the training data are (slightly) modified: this ensures that the algorithm

is actually learning from data, without overfitting them. Let S\in = Sn \ {zi}
be the set, where the i-th pattern is removed. Let also L̂loo

n

(
A(Sn,H),Sn

)
=

1/n
∑n
i=1 `(A(S\i

n ,H)
, zi) be the Leave-One-Out (LOO) error, where `(., .) is a

suitable loss function [9]. Then, the following model selection procedure can be
defined [9]:

H∗ : arg minH∈G

{
L̂loo
n

(
A(Sn,H),Sn

)
+

√
2
δ

[
1√
n

+3
(
Ĥloo(A(S√n/2,H),S√

n/2)+
√

log(2/δ)√
n

)]}
(1)

where Ĥloo

(
A(S√n/2,H),S

√
n/2

)
is the Empirical Hypothesis Stability:

Ĥloo(A(S√n/2,H),S
√
n/2)=

8
n
√
n

∑√
n/2

i,j,k=1 |`(A(S̆k√
n/2

,H), z̆
k
j )− `(A

(S̆k\i√
n/2

,H)
, z̆kj )| (2)

In Eq. (2), S̆k√n/2 : {z(k−1)
√
n+1, . . . ,z(k−1)

√
n+

√
n/2}, z̆

k
j : z(k−1)

√
n+

√
n/2+j , and

k ∈ {1, . . . ,√n/2}. Every quantity involved in the bound can be computed from
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the available data [10, 9], and sets of smaller cardinality are involved in the
derivation of the bound: this is particularly appealing for big data applications.
Note also that Ĥloo(A(S√n/2,H),S

√
n/2) can be effectively estimated via a Monte

Carlo procedure: this enables computing a subset sMC of the required steps, i.e.

sMC � n
√
n

8 .
The Bag of Little Bootstraps (BLB) approach [8, 7] represents an alternative

to FAS, which builds on the conventional Bootstrap procedure [18] by considering
in turn only b = nγ data, with γ ∈ [1/2, 1], in place of the whole dataset.
In particular, BLB consists in sampling bs times Sn without replacement, so
to create couples of datasets Ljb and T jb (j ∈ {1, . . . , bs}), each consisting of

b ∈ [
√
n, n] data. Then, each Ljb is sampled with replacement bb times, so to

derive Bj,kn datasets (k ∈ {1, . . . , bb}), each consisting of b samples. Finally,
models are trained on the sets Bj,kn and tested on the corresponding T jb , so to
define the following model selection procedure:

H∗ : arg minH∈G
1

bsbbb

∑bs
j=1

∑bb
k=1

∑
z∈T jb

`(A(Bj,kn ,H), z). (3)

3 CPU-based and GPU-based LS-SVM Model Selection

Least Squares Support Vector Machines (LS-SVM) [17] is a state-of-the-art al-
gorithms for classification. LS-SVM is preferred to other approaches since its
training phase can be easily parallelized on different architectures [19, 12], re-
sulting in effective implementations especially when the input space dimensions
are small with respect to the number of samples.

We focus in this paper on linear classifiers f(x) = wTx + b, where w ∈ Rd
and b ∈ R, since they are suitable for big data purposes [20]. The LS-SVM
classifier is trained by solving the following linear system:

([X1]TX1 + λI0)[wT , b]T = [X1]Ty (4)

where X = [x1, . . . ,xn]T , X1 = [X,1], y = [y1, . . . , yn]T , 1 = {1, ..., 1} is a
n-dimensional array, and I0 is a (d+1)×(d+1) diagonal matrix with I0,0 = 0.
Moreover, λ > 0 is a hyperparameter that balances the tradeoff between over
and under-fitting. Then, in this framework, A = LS-SVM and H = {λ}.

The model selection strategies introduced in Section 2 require that some LS-
SVM models are trained on sets of different cardinalities. BLB relies on bs · bb
sets of b ∈ [

√
n, n] patterns: in big data applications, usually choosing b =

√
n

(i.e. γ = 1/2) is sufficient to guarantee a good trade-off between computational
time and accuracy . FAS works on sets consisting of

√
n/2 samples; it also requires

to compute the LOO error, which can be derived with a small effort through a
decremental unlearning algorithm [21, 12]. As a consequence, when n is large,
the computational burden is remarkably reduced with respect to conventional
approaches, like standard Bootstrap or Cross Validation [6].

The CPU-based implementations of BLB and FAS are straightforward to de-
ploy. However, modern GPU systems outperform CPU architectures in terms of
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cost-to-performance ratio for highly-parallel and computational-intensive work-
loads [16]: this is enabled by larger memory bandwidth and FLoating point
Operations Per Second (FLOPS) values, and by the possibility of exploiting
several parallel pipelines to run programs in Single Instruction Multiple Data
(SIMD) mode. In particular, when dealing with BLB and FAS model selection,
we exploit the main GPU features to:

• Solve Eq. (4) in a parallel fashion, through the use of cuBLAS libraries1;
• Train the different models for FAS and BLB model selection, so to saturate

the intrinsic parallelism capabilities of GPUs;
• Find the LOO error for FAS, through a parallel decremental unlearning

procedure for LS-SVM [12].

4 Experimental Results and Discussion

We test BLB and FAS model selection strategies on two well known real-world
datasets: Mnist [22] (10 digit recognition task, 28×28 pixels images, 60000 sam-
ples), and NotMnist [23] (A-to-J characters recognition task, 28×28 pixels im-
ages, 550000 samples). Since we are dealing with binary classification, in case
of multi-class datasets we adopt the One Vs. One (OVO) procedure [9] in order
to derive m(m− 1)/2 binary classification problems, where m is the number of
classes. We use n = {102, 103, 104} training samples for both datasets, while
we also performed experiments with n = 105 on NotMnist; the unselected data
are used as reference set for computing the error of the selected model. We
search for λ among 20 values in the range [10−5, 102], equally spaced in logarith-
mic scale [9]. Concerning the experimental setup for FAS and BLB, we tested
sMC ∈ {50, 100, 200} and bs = bb = {7, 10, 14}: for each value, experiments are
replicated 10 times to generate statistically relevant results. Tests have been
performed on a PC equipped with Windows 8.1 x64, mounting an Intel i7 3820
3.6 GHz CPU, 16 GB @1.6GHz RAM, 1TB 7200rpm @6Gb/s Hard Disk, and a
GeForce GTX 690 (2x GK104-355-A2 @1 GHz) GPU board.

Table 1 presents the results. In particular, we report the average error rate
on the reference sets: since we verified that this quantity is not remarkably
influenced by the variations of sMC , bs, and bb, due to space constraints we
only report results for sMC = 100 and bs = bb = 10. Table 1 also shows the
computational time (in seconds) needed by FAS and BLB to complete model
selection, as sMC , bs, bb, and n are varied, on CPU-based and GPU-based ar-
chitectures (TCPU and TGPU , respectively): U is the relative speed-up obtained
by exploiting GPUs. The following conclusions can be drawn:

• FAS and BLB allow choosing models, characterized by similar errors;
• GPU-based model selection procedures are much faster than CPU-based

ones (up to 30x speed-up);
• On average, FAS can be parallelized to higher extents than BLB: as a

consequence, FAS is faster and requires less resources overall.

1https://developer.nvidia.com/cublas.
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Error on the reference set with sMC ∈ 100 and bs = bb = 10

n 102 103 104 n 102 103 104 105

OVO FAS BLB FAS BLB FAS BLB OVO FAS BLB FAS BLB FAS BLB FAS BLB

0vs1 0.49 0.47 0.50 0.45 0.52 0.31 AvsB 10.38 10.35 11.87 11.23 7.48 7.44 6.50 6.50
0vs2 3.91 2.82 1.98 2.17 1.54 1.83 AvsC 8.57 8.51 9.19 8.34 5.85 5.83 5.10 5.10
0vs3 2.49 2.29 1.23 1.25 0.89 1.16 AvsD 10.88 10.78 11.07 10.24 7.18 7.16 6.01 6.01
0vs4 1.47 1.67 0.66 1.03 0.57 0.57 AvsE 9.63 9.57 10.83 10.34 6.84 6.80 5.74 5.74
0vs5 3.86 4.12 2.25 2.22 1.38 1.96 AvsF 9.65 9.57 10.68 9.20 6.05 6.00 5.09 5.09
0vs6 3.08 2.76 1.52 1.62 1.13 1.35 AvsG 11.21 11.07 11.22 11.41 7.35 7.31 6.30 6.30
0vs7 1.92 1.85 0.58 1.00 0.47 0.73 AvsH 12.92 12.91 14.12 12.81 9.52 9.49 8.50 8.50
0vs8 2.29 2.20 1.77 1.56 1.32 1.32 AvsI 11.97 11.88 12.15 11.33 8.43 8.44 7.46 7.46
0vs9 1.71 2.08 1.03 1.35 0.77 1.24 AvsJ 11.39 11.17 11.20 10.26 7.47 7.44 6.87 6.88
1vs2 4.62 3.71 2.22 2.37 1.77 2.22 BvsC 10.86 10.76 10.39 9.36 6.42 6.40 5.35 5.34
1vs3 3.03 3.07 1.76 3.10 1.54 1.67 BvsD 13.60 13.49 13.04 12.52 9.40 9.37 8.06 8.06
1vs4 1.39 1.51 0.68 0.74 0.41 0.53 BvsE 12.91 12.83 12.61 11.77 8.20 8.15 7.09 7.10
1vs5 2.04 1.94 1.13 1.32 1.06 1.12 BvsF 10.03 9.98 10.00 9.67 6.79 6.75 5.77 5.77
1vs6 1.12 1.17 0.80 0.70 0.47 0.51 BvsG 12.62 12.59 13.56 12.03 8.17 8.12 6.86 6.87
1vs7 2.15 2.24 1.11 1.59 0.89 1.15 BvsH 10.92 10.90 11.24 11.27 7.85 7.78 6.69 6.69
1vs8 6.61 5.33 4.39 4.06 3.58 3.81 BvsI 13.03 12.92 12.46 13.19 9.21 9.20 8.34 8.34
1vs9 1.41 1.77 0.82 1.03 0.44 0.72 BvsJ 10.19 10.21 10.62 10.03 7.15 7.11 6.30 6.30
2vs3 7.14 6.57 4.77 4.08 3.19 3.66 CvsD 8.49 8.47 9.46 8.66 6.11 6.08 5.19 5.19
2vs4 4.11 3.51 2.60 2.38 1.72 2.51 CvsE 13.16 13.09 13.79 13.22 9.63 9.61 8.66 8.66
2vs5 6.85 5.73 3.65 3.21 2.37 2.76 CvsF 8.11 8.06 8.55 8.14 5.77 5.73 5.06 5.07
2vs6 6.62 5.49 3.02 3.39 1.96 2.93 CvsG 13.57 13.52 15.01 13.13 9.27 9.25 7.93 7.93
2vs7 5.07 4.03 3.16 2.82 1.58 2.69 CvsH 7.98 7.94 8.82 8.39 5.94 5.89 5.05 5.05
2vs8 8.65 6.57 4.83 3.98 3.17 3.71 CvsI 10.26 10.14 10.62 9.43 7.12 7.10 6.12 6.12
2vs9 4.28 4.16 2.19 2.71 1.44 2.06 CvsJ 8.53 8.40 9.53 8.73 6.25 6.21 5.05 5.05
3vs4 2.64 1.87 1.35 1.54 0.90 1.16 DvsE 10.62 10.57 10.62 9.80 6.70 6.66 5.72 5.72
3vs5 11.45 12.24 7.20 5.97 4.67 5.84 DvsF 9.20 9.12 9.74 9.08 6.24 6.20 5.21 5.21
3vs6 3.16 2.09 1.56 1.39 0.85 1.11 DvsG 11.26 11.18 11.11 10.69 7.40 7.38 6.15 6.15
3vs7 4.05 3.46 2.36 2.51 1.69 2.25 DvsH 11.62 11.42 10.72 10.23 7.25 7.19 6.16 6.16
3vs8 10.85 9.83 5.65 4.82 3.93 4.57 DvsI 11.33 11.26 11.80 10.79 8.52 8.50 7.49 7.48
3vs9 4.37 4.50 3.06 3.57 2.24 2.87 DvsJ 11.28 11.14 10.79 10.25 7.36 7.35 6.17 6.18
4vs5 3.32 2.92 1.85 1.70 1.34 1.41 EvsF 10.64 10.53 12.42 10.96 7.68 7.64 6.52 6.52
4vs6 2.19 2.00 1.76 1.45 0.98 1.21 EvsG 12.28 12.25 13.55 11.58 8.48 8.46 7.51 7.51
4vs7 4.28 3.48 3.18 2.11 1.58 2.06 EvsH 11.00 10.91 11.30 10.59 7.37 7.34 6.17 6.18
4vs8 2.70 2.58 1.72 1.56 1.01 1.37 EvsI 13.88 13.80 13.49 12.77 9.66 9.64 8.74 8.74
4vs9 9.30 8.44 5.32 5.13 3.82 4.76 EvsJ 11.12 10.88 10.57 10.17 7.01 6.96 5.98 5.99
5vs6 6.99 5.38 3.49 3.28 2.59 2.85 FvsG 9.66 9.56 10.44 9.44 6.59 6.56 5.78 5.78
5vs7 3.16 2.56 1.77 1.44 0.93 1.05 FvsH 10.33 10.19 10.87 10.01 6.89 6.80 5.56 5.56
5vs8 8.71 8.13 6.10 5.70 4.26 5.47 FvsI 10.96 10.85 12.37 10.52 8.15 8.10 7.08 7.07
5vs9 4.31 4.27 2.82 2.37 1.69 2.23 FvsJ 10.98 10.95 10.67 10.28 7.38 7.33 6.67 6.68
6vs7 1.23 0.99 0.49 0.29 0.25 0.18 GvsH 10.62 10.57 10.48 10.29 7.09 7.03 6.38 6.38
6vs8 3.04 2.39 2.12 1.89 1.70 1.73 GvsI 12.56 12.50 13.11 11.46 8.75 8.74 7.85 7.85
6vs9 0.93 0.78 0.65 0.42 0.34 0.42 GvsJ 10.44 10.40 10.82 10.21 7.20 7.16 6.50 6.50
7vs8 3.24 3.01 1.68 1.96 1.13 1.56 HvsI 12.62 12.54 12.51 12.27 9.22 9.23 8.26 8.27
7vs9 10.16 9.79 6.46 5.97 4.52 5.46 HvsJ 9.81 9.62 10.42 9.89 7.00 6.98 5.99 5.99
8vs9 5.22 4.77 3.08 3.24 2.69 3.12 IvsJ 14.93 14.87 14.11 13.36 10.57 10.53 9.76 9.76

sMC ∈ 50 and bs = bb = 7
TCPU 286 286 286 288 287 290 TCPU 285 287 286 289 287 292 293 301
TGPU 9 11 9 11 9 12 TGPU 9 10 9 11 9 12 9 16
U 33 26 33 25 32 23 U 32 28 32 26 32 23 32 19

sMC ∈ 100 and bs = bb = 10
TCPU 286 286 286 288 287 290 TCPU 285 287 286 289 287 292 293 301
TGPU 9 11 9 11 9 12 TGPU 9 10 9 11 9 12 9 16
U 33 26 33 25 32 23 U 32 28 32 26 32 23 32 19

sMC ∈ 200 and bs = bb = 14
TCPU 571 559 571 561 574 568 TCPU 571 563 573 565 581 569 581 587
TGPU 20 20 20 22 20 22 TGPU 20 20 20 22 20 22 21 28
U 28 28 28 26 28 26 U 29 28 28 26 28 26 28 21

Table 1: Results on Mnist and NotMnist datasets. Bold face indicates highest
statistical significance with respect to Student’s t-test.

Future researches will extend the work to the kernel version of the exploited
algorithm, thus enabling effective analysis also of high dimensional datasets.
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