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Abstract. Discovering temporally delayed causalities from data raises no-
toriously hard problems in reinforcement learning. In this paper we define
a space of temporally extended features, designed to capture such causal
structures, using a generating operation. Our discovery algorithm PULSE
exploits the generating operation to efficiently discover a sparse subset
of features. We provide convergence guarantees and apply our method to
train a model-based as well as a model-free agent in different domains. In
terms of achieved rewards and the number of required features our methods
can achieve much better results than other feature expansion methods.

1 Introduction

Temporally delayed causalities are a natural aspect of real-world problems. If the
latent variable of the causality is not observed this leads to a partially observable
Markov decision process (POMDP), which for a reinforcement learning agent
implies the fundamentally hard problem of discovering and representing these
causalities based on interaction with the environment. For instance, whether a
door is locked or not may depend on whether the robot turned the key some time
ago, likewise, switching on the electric kettle produces hot water only at a later
time. Existing approaches for solving POMDPs either define an abstract Markov
state representation that subsumes information from past observations, such as
belief states [1], predictive state representations [2], or finite state controllers [3],
or work with history-based features, such as context tree methods [4, 5, 6]. In
the important case of temporally delayed causalities history-based features have
the advantage of being capable of explicitly representing the causal structure,
which gives a better structural insight and allows a more intuitive integration of
prior domain knowledge – one of the few means to improve autonomous artificial
agents.

Contribution We propose a method for defining a feature space and an as-
sociated learning algorithm on a common basis by using a generating operation
N+ that spans a space of temporally extended features (TEFs) with increas-
ing complexity and temporal extent, tailored to represent delayed causalities.
Our learning algorithm PULSE makes use of N+ to iteratively discover a sparse
subset of TEFs. We provide convergence guarantees and use PULSE for solv-
ing POMDPs in model-based and model-free fashion showing that, in terms of
achieved rewards as well as the number of required features, the agents trained
with PULSE can achieve much better results than their competitors.
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Content We will first establish the connection to related work on context
trees, feature expansion, and L1-regularized reinforcement learning. We will then
introduce our method by defining temporally extended features, describing our
discovery algorithm PULSE in detail, and discussing convergence properties and
the richness of the generated representation. Finally, we discuss our empirical
evaluations and possible future research.

2 Related work

As said above, only methods using history-based features are able to explicitly
represent temporally delayed causalities. The most widely used approach for
defining such features are context tree (CT) methods [4, 5, 6], which build a
decision tree with each leaf node corresponding to a complex feature defined as
the conjunction of basis features along the path to the root. We will compare
our method with the utility tree (U-Tree) algorithm by McCallum [4] in its
original model-free version as well as a proposed model-based variation, which we
denote by U-Tree (value) and U-Tree (model), respectively. For U-Tree (model)
we replaced the Kolmogorov-Smirnov test by the chi-square test to measure the
divergence of observation-reward distributions instead of value distributions.

By using a decision tree, CT methods are subject to three major constraints
that we attempt to overcome with our method proposed in this paper: (1) CT
methods require discrete valued basis features to build the decision tree while
our method uses a linear combination of features thus allowing for any scalar
valued features. (2) Features in a decision tree are mutually exclusive, that is, at
any time only one of them can be active. In contrast, a linear combination of |F|
binary features can take the exponentially larger number of 2|F| different values.
(3) Restructuring a decision tree (as needed for transfer learning tasks when
part of the tree should be reused to represent different data) is a non-trivial task
while in our learning algorithm PULSE restructuring the feature set by growing
and shrinking it is a natural part of the learning process.

Our method combines two other branches of research: that of feature expan-
sion techniques and that of L1-regularization applied to temporal difference (TD)
learning. Feature expansion techniques were successfully applied to learn (condi-
tional) random field models for text [7, 8] and, in reinforcement learning, for linear
approximations of the value or transition function [9, 10]. In all cases a monotoni-
cally growing feature set is learned by scoring and including conjunctions of basis
features. In contrast, the approaches for L1-regularized TD learning [11, 12] start
with a large feature set that is monotonically shrunk during the learning process.

Our discovery algorithm PULSE combines these two basic ideas by both
growing and shrinking the feature set in each iteration. PULSE can thus be
regarded as a generalization of these approaches. Furthermore, the generating
operation N+ and the objective function can be chosen freely, which makes
PULSE very flexible and applicable to a wide range of problems.
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3 Discovering temporally extended features

Temporally extended features The set T of temporally extended features
(TEFs) is the set of all maps from histories (A×O×R)∗, that is, sequences of
action-observation-reward triplets, to the real numbers R. In practice we will al-
ways work with a subset of T that is generated by an operationN+ :P(T )→P(T )
where P(T ) is the power set of T . This means, for a given set F of features
N+(F) is a set of candidate features and we work with the smallest subset
TN+ ⊆ T that is closed under N+. Our discovery algorithm PULSE will in each
iteration make use of the candidate features to explore the feature set TN+ .

The specific choice of N+ depends on the problem and learning method
used with PULSE . To represent temporally delayed causalities we use a set of
basis features B consisting of indicator features for all actions, observations, and
rewards at all different times in the past and define N+ to generate candidate
features by taking all possible conjunctions of an existing feature with one of
the basis features. To introduce a bias towards the near past we modify N+ to
only use basis features that go one step further into the past than the existing
features and not farther than a fixed time horizon tmin = −k. Also to initiate
learning from an empty feature set the candidate features will in that case be
all basis features with time index t = 0.

Note that this specific definition of N+ is at the same time a restriction of
the general definition of TEFs and (for this very reason) a means to tame their
complexity and tailor the used subset TN+ to our needs. Our learning algorithm
PULSE presented below does not rely on this definition and can equally well be
used with any other definition of N+.

The PULSE algorithm PULSE stands for Periodical Unconvering of Local
Structure Extensions. The idea is to exploit the structure that N+ induces on the
feature set TN+ to discover local extensions of the current feature set. By using
an L1-regularization within the objective function superfluous features are elim-
inated. Repeating this procedure results in a pulsating dynamic of the feature
set, guided by N+ and the objective, driving the feature set to an optimum.

The PULSE algorithm is detailed in Alg. 1. The main loop consists of (1) grow-
ing the feature set usingN+ and assigning zero weight to any new features, (2) op-
timizing the objective function O with respect to the feature weights Θ given the
current feature set F and data D, and (3) shrinking F by eliminating any zero-
weight features. The crucial part is the optimization step (line 6) where the feature
weights are optimized. In order for PULSE to work properly, the objective function
O should fulfill two properties: (1) argminΘ O(F ,Θ, D) should be sparse, that is,
after optimizing O many Θf should be zero. (2) Features with zero weight should
not affect the objective value, which ensures monotone convergence throughout
the growth and shrinkage operations. O can otherwise be chosen freely.

Convergence guarantees PULSE is guaranteed to converge to a locally opti-
mal feature set with globally optimal weights (provided O is convex and fulfills
condition (2) above). For the important case of predicting an event that depends
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Algorithm 1 The PULSE algorithm

1: Input: N+,O, D
2: Output: F , Θ

3: Initialize: F ← ∅, Θ← ∅
4: repeat
5: grow feature set(F ,Θ, N+)
6: Θ← argminΘ O(F ,Θ, D)
7: shrink feature set(F ,Θ)
8: until O,F ,Θ do not change

9: grow feature set(F ,Θ, N+)
10: Initialize: F+ ← N+(F)
11: for all f ∈ F+

12: if f /∈ F then Θf ← 0 endif
13: end for
14: F ← F ∪ F+

15: shrink feature set(F ,Θ)
16: for all f ∈ F
17: if Θf is 0 then F ← F \ f endif
18: end for

on n each necessary and jointly sufficient conditions1 PULSE is even guaranteed
to converge to a globally optimal feature set withN+ using only pairwise conjunc-
tions. To see this, note that a predictor using m-fold conjunctions (m < n) will
monotonically improve as m → n because each marginalized condition impairs
the prediction. When greedy expansion does not guarantee global convergence
simulated annealing approaches, where sub-optimal features are included with a
certain probability, still guarantee asymptotic convergence to the global optimum.

Richness of the representation If N+ is defined as above with a limit in
the time horizon the resulting set of TEFs has the same descriptive power as a
tabular k-MDP representations. In general, PULSE can be used with any N+

that produces finite extensions N+(F). This provides a powerful framework,
which can also be extended in various ways including the use of continuously
parameterized features, products of basis functions for continuous domains, or
finite state machines as basis features. Which choice of N+ could generate, for
instance, a set of TEFs equivalent to k-order predictive state representations is
an interesting non-trivial question.

Model-based and model-free agents for experiments Our two agents
trained with PULSE , referred to as TEF+CRF and TEF+LinearQ, use a con-
ditional random field (CRF) [13] and a linear approximation of the state-action
value function (Q-function), respectively

TEF+CRF (model-based) TEF+LinearQ (model-free)

p(ō, r̄|h̄, ā) =
exp

∑
f∈F θff(h)∑

ō,r̄ exp
∑

f∈F θff(h) Q(ā, h̄) =
∑
f∈F θff(h) ,

where (ā, ō, r̄) is the last action-observation-reward triplet in history h and h̄
is the remaining part of h. TEF+CRF is trained by minimizing the neg-log-
likelihood of the data via gradient descent using L-BFGS [14]. For TEF+LinearQ
we use least-squares policy iteration [15]. Both use an additional L1-regulariza-
tion of variable strength.

1Such as “putting the key in the lock and turning it and pushing the handle and pulling”
in order to open a door.
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k-MDP states: 1 600 4 096 000 ∞
latent states: 12 34 012 224 11

Fig. 1: Mazes and learning curves with size of k-MDP and latent state space.

4 Experiments

We performed evaluations in three different deterministic partially observable
maze environments that we believe exhibit a prototypical structure for tempo-
rally delayed causalities. The 2×2 and 4×4-maze (left and center in Fig. 1) con-
tain delayed rewards that are “activated” at one location and later “collected”
at different one. The delay is ∆t = 2 (red solid arrows) or ∆t = 3 (orange dashed
arrow). Additionally, the 4×4-maze contains doors that open for two time steps
when the agent operates the nearby switch (semicircle) by stepping into the wall.
The time horizon for these mazes was tmin = −2 and tmin = −3, respectively.
The Cheese Maze maze (right in Fig. 1), where the agent only perceives adjacent
walls, was introduced in [4]. The time horizon was tmin = −2.

For each maze we performed a number of trials with a training phase of
varying length (using random policy) and an evaluation phase of fixed length
(using the agent’s optimal policy). The plots in Fig. 1 show the mean reward
during evaluation with the standard error of the mean as error bars. We used
forward tree search for planning with the model-based methods.

Results In all three environments our TEF+CRF method using PULSE out-
performs U-Tree (model) by a large margin suggesting it to be the preferable
method in a model-based setting. TEF+LinearQ, on the other hand, performs
only equal or inferior to U-Tree (value) in the model-free setting. This suggests
that focusing only on rewards makes it difficult to discover the relevant fea-
tures. Note, however, that the model-based TEF+CRF even keeps up with the
model-free U-Tree (value) while at the same time solving the significantly more
complex task of learning a complete predictive model. Also, we observed PULSE

to generally use fewer features of lower order (fewer conjunctions) than U-Tree
and to learn more compact models for longer training lengths.

5 Conclusion and outlook

We considered the problem of uncovering temporally delayed causalities in par-
tially observable reinforcement learning domains. To this end we introduced tem-
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porally extended features (TEFs) along with a training method called PULSE that
efficiently and incrementally discovers a sparse set of relevant TEFs. We provided
convergence guarantees and evaluated our approach empirically showing that in
terms of achieved rewards as well as the number of required features PULSE

clearly outperforms its competitors in a model-based setting. While in this paper
we considered very simple basis features, we discussed how the general framework
provided by PULSE can be extended to learn much richer representations.
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