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Abstract. We study effective Gaussian process (GP) modelling of mul-
tiple short time series. These problems are common for example when
applying GP models independently to each gene in a gene expression time
series data set. Such sets typically contain very few time points and hence
naive application of common GP modelling techniques can lead to severe
over-fitting in a significant fraction of the fitted models, depending on the
details of the data set. We propose avoiding over-fitting by constrain-
ing the GP length-scale to values that are compatible with the spacing of
the time points. We demonstrate that this eliminates otherwise serious
over-fitting in real experiment using GP model to rank single nucleotide
polymorphisms (SNPs) based on their likelihood of being under natural
selection.

1 Introduction

Gaussian processes (GPs) are widely applied non-parametric probabilistic mod-
els for continuous data [10]. Because of their non-parametric nature, they can
flexibly adapt to differently sized data sets and can easily accommodate for ex-
ample non-uniformly sampled data. GPs are computationally very convenient,
because they permit exact marginalisation of the latent process in regression
with a Gaussian likelihood. Most methods development work on GPs in ma-
chine learning has focused on developing efficient inference for large data sets.
This is an important area, as naive inference algorithms suffer from cubic compu-
tational complexity with respect to the data set size, and the recently developed
methods can successfully reduce this significantly.

In this paper we focus instead on the other frontier of GP applications in
data sets with a very large number of small independent instances. GPs for such
applications have recently gathered significant interest in computational systems
biology, where they provide a very powerful model for sparsely and often irreg-
ularly sampled gene expression time series [5, 11, 6, 3, 4, 1, 13]. Reliable fitting
of very large number of independent models is important in many applications
of these models, such as ranking of targets of gene regulators [3].
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Most gene expression time series are very short with a great majority having
less than 9 time points [2], so computational complexity of any GP inference
method will typically not be an issue. Instead, the application of GP methods
in these problems will face other problems due to lack of and sparseness of data.
Depending on the specific problem, this can easily lead to either over-fitting or
under-fitting. When fitting the models automatically to a large number, possibly
several thousands, of instances, it is impractical to manually locate and fix these
problematic fits.

In this paper we present methods for setting constraints or more restrictive
priors to kernel length-scale parameters that help avoid these phenomena.

2 Gaussian Process Modelling

A GP is a stochastic process {f(t)|t ∈ T } for which the marginal distribution
at any finite sub-collection of points t1, . . . , tn is multivariate Gaussian [10].
The process is completely defined by the mean function μ(t) and the covariance
function k(t, t′), that also define the mean vector and covariance matrix of the
multivariate Gaussian over the sub-collection. For simplicity, we set the mean
function to zero μ(t) ≡ 0 by subtracting the mean of data.

The most widely used covariance function for GPs in machine learning is the
squared exponential covariance [10]

kSE(t, t
′) = σ2

f exp

(
− r2

2�2

)
, (1)

where r = ||t − t′||. The covariance depends on two positive hyperparameters:
variance σ2

f and length-scale �. The length-scale parameter � governs the range
of dependencies in the process. A short length-scale corresponds to rapidly
varying functions with weak long-range dependencies, while a large length-scale
corresponds to slowly varying functions. Extremely small length-scale may lead
to a situation where each observation is treated as essentially independent, which
makes the model overfit.

2.1 GP-based approach to ranking time series

Recently, GPs have been successfully used to develop methods for ranking ge-
nomic markers according to their temporal behaviours [4, 11]. For example,
one may be interested in the most active genes whose expression levels change
during a time interval, or in the SNPs whose allele frequencies show changes
across generations, being affected under natural selection. GPs are very useful
for modelling temporal behaviours of these genomic markers efficiently in con-
trast to the commonly used pairwise comparisons which fail to exploit the full
temporal behaviour of the markers of interest.

Kalaitzis et al. have recently proposed a GP-based approach for ranking
differentially expressed gene expression time courses [4]. In this approach, genes
are ranked according to their Bayes factors (BFs), where BFs are the ratio of
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the marginal likelihoods under “time-dependent” and “time-independent” GP
models.

In the “time-independent” model, the observations (D) are assumed to have
been randomly generated around a constant mean (no temporal dependency)
whereas the time dependency in the “time-dependent” model is modelled by
a squared exponential covariance function (kSE in Eq. 1). Assuming the noise
is additive white Gaussian, the corresponding white noise covariance matrix is
given by

kW = σ2
nI, (2)

where I is an n-by-n identity matrix and σ2
n is the noise variance parameter.

Therefore, we can define our hypotheses as following:

H0 : The data has come from a “time-independent” model ≡ D ∼ GP (0,Σ0)
H1 : The data has come from a “time-dependent” model ≡ D ∼ GP (0,Σ1),

where Σ0 = kW and Σ1 = kSE + kW.
Bayes factors (BF) can be computed as [4, 11]:

BF =
p(D|θ̂1, H1)

p(D|θ̂0, H0)
, (3)

where θ̂1 and θ̂0 include the maximum likelihood estimates of the hyperparam-
eters in the corresponding GP models. Note that Σ1 becomes equivalent to Σ0

when � → ∞ and σ2
f → 0. Therefore, a Bayes factor of 1 indicates that it is more

likely that the time course data have been generated from a “time-independent”
model, while larger BFs indicate that it is more likely that the data have been
generated from a “time-dependent” model.

0

0.1

0.2

0.3

�

F
(�

)

0
Δ t

4

Δ t

2
Δ t 2Δ t

Fig. 1: Empirical cumulative distribution of length-scale estimates for the SNPs
with BF > 3. Δt was set to 4, which is the shortest distance between the
consecutive time points.
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2.2 Length-scale bounds

Naive application of common GP modelling techniques can lead to severe over-
fitting or under-fitting, depending on the details of the data set. We propose
avoiding over-fitting by constraining the GP length-scale � to values that focus
most of the energy spectrum to frequencies below the Nyquist frequency corre-
sponding to the sampling in the data set. According to the Nyquist sampling
theorem, the Nyquist frequency sn = 1

2Δt is the maximal frequency that can
be identified in the spectral representation of the sampled signal [12, 8], where
Δt is the sampling interval in the data set. This can be generalized to the
nonuniformly sampled data as long as the samples satisfy the Nyquist rate on
the average [7]. Therefore, we define Δt conservatively as the shortest distance
between consecutive data points to obtain the least restrictive bound.

In case of the squared exponential covariance function, the spectral density
is given by

SSE(s) = (2π�2)D/2 exp(−2π2�2s2), (4)

where D is the number of dimensions and s denotes the frequency [10]. For
D = 1, the fraction α of the system’s energy on the frequencies that are below
the Nyquist frequency is:

α =

1
2Δt∫

− 1
2Δt

SSE(s) ds = erf

(
π�√
2Δt

)
. (5)

In the next section we investigate the effects of the overfitted models on GP-
based ranking methods in a real data set and we introduce a lower bound for
the length-scales to overcome the emerged problems.

3 Results and discussion

We applied naive GP regression on a real data set which was obtained by evolve
and re-sequencing methods on Drosophila melanogaster populations under a
fluctuating temperature regime [9]. The data set contains the allele frequencies
of the SNPs at the following generations: three replicates at base generation,
two replicates at generation 15, single replicates at generation 23 and 27, three
replicates at generation 37. In our analysis, we included only the bi-allelic SNPs,
which were in total 1,257,117. Aiming to identify the SNPs which were affected
under natural selection, we followed Kalaitzis et al.’s method and modelled the
allele frequencies under the “time-dependent” and “time-independent” GP mod-
els by using the “gptk” R package [4]. Then, we ranked the SNPs according to
their Bayes factors. We observed that approximately 10% of the highly-ranked
SNPs suffered from over-fitting, i.e., they had very small length-scale estimates
along with large Bayes factors (> 3), and thus they dominated the ranking de-
ceptively. Fig. 1 shows the empirical cumulative distribution of the length-scale
estimates for the SNPs which had Bayes factors larger than 3. The GPs under
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(a) Overfitted example
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(b) Non-overfitted example

Fig. 2: Log-likelihoods vs. length-scales (�) for (a) overfitted example and (b)
non-overfitted example. The signal variance (σ2

f ) and the noise variance (σ2
n)

were optimised at each value of �. Overfitted examples resulted from the fact
that the maximum log-likelihood was found at a very small length-scale estimate.
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Fig. 3: Example GP fits in different groups of length-scale (�) estimates. The
problem of over-fitting wears off as � > Δt. Confidence regions are shown for ±
2 standard deviation. Replicates at the same time points are shifted by 0.5 for
better visualisation.
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the “time-dependent” model tend to overfit if the maximum likelihood is found
at a relatively small length-scale estimate (see Fig. 2). Therefore, a practical
solution to prevent such cases from dominating the ranking would be to set a
lower bound (�min) on the length-scale estimates. Visual inspection of the GP
maximum likelihood fits shown in Fig. 3 suggests that setting �min to ≈ Δt
would be an appropriate choice, which also focuses most of the energy spectrum
to frequencies below the Nyquist rate (note that as �

Δt ≥ 1, α → 1 in Eq. 5).
For Bayesian parameter estimation, a uniform prior over the length-scale over

the interval [�min, tn − t1] seems like a reasonable objective prior. The usage of
such priors would help eliminate the false positives by moving down the inflated
Bayes factors caused by the overfitted models in the ranked list.

The derivation presented here was for squared exponential covariance, but
similar bound can be derived for Matérn covariance functions too.
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