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Abstract. The nonnegative matrix factorization (NMF) is a powerful

data analysis and dimensionality reduction technique. So far, the NMF has

been limited to a single-objective problem in either its linear or nonlinear

kernel-based formulation. This paper presents a novel bi-objective NMF

model based on kernel machines, where the decomposition is performed

simultaneously in both input and feature spaces. The problem is solved

employing the sum-weighted approach. Without loss of generality, we

study the case of the Gaussian kernel, where the multiplicative update

rules are derived and the Pareto front is approximated. The performance of

the proposed method is demonstrated for unmixing hyperspectral images.

1 Introduction

The nonnegative matrix factorization (NMF) is a powerful data analysis and
dimensionality reduction technique. It seeks to approximate a high-rank non-
negative input matrix by two nonnegative low-rank ones. A virtue of NMF is the
ability to provide a parts-based representation for nonnegative input data, which
facilitates a tractable physical interpretation. Suitable to the hyperspectral un-
mixing problem, the NMF jointly extracts the “pure” spectra called endmembers
(recorded in the first low-rank matrix) and estimates the corresponding abun-
dances of each endmember at each pixel (recorded in the second one).

Early NMF and its variants mainly consider a linear model. The objec-
tive function for minimization, namely the difference between the input matrix
and the product of the estimated ones, is defined in an Euclidean space — the
so-called input space. This common objective function with Frobenius norm
[1] is often improved by additive regularization terms. Recent works have been
extending the linear NMF model to the nonlinear scope, by exploiting the frame-
work offered by the kernel machines. The kernel-based methods mainly map the
data with some nonlinear function into a reproducing kernel Hilbert space — the
so-called feature space —, where the existing linear techniques are performed on
the transformed data. Unfortunately, most kernel-based NMF, e.g., [2, 3], suffer
from the pre-image problem [4], that is, the obtained bases lie in the feature
space and a reverse mapping to the input space is difficult. In [5], we circumvent
this problem by minimizing an objective function defined in the feature space.

So far, in either its linear conventional formulation or its nonlinear kernel-
based formulation, as well as all of their variations, the NMF has been restricted
to a single-objective optimization problem. In essence, the underlying assump-
tion is that it is known in prior that certain model is most suitable to the data

∗This work was supported by the French ANR, grand HYPANEMA: ANR-12BS03-0033.

585

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



under study. To obtain such prior information is not practical in most real-world
applications. To this end, we propose to view the NMF as a multi-objective
problem, in particular a bi-objective problem in this paper, where the objective
functions defined in both input and feature spaces are taken into account. In-
stead of a single optimal decomposition, we seek a set of nondominated, Pareto,
optimal solutions [6], by minimizing a weighted sum of objectives [7, 8].

2 A primer on the linear and kernel-based NMF

Given a nonnegative data matrix X ∈ ℜL×T , the conventional NMF aims to
approximate it by the product of two low-rank nonnegative matrices E ∈ ℜL×N

and A ∈ ℜN×T , i.e., X ≈ EA. An equivalent vector-wise model is given by
xt for t = 1, . . . , T , with xt ≈

∑N
n=1 ant en, where each column of X, namely

xt, is represented as a linear combination of the columns of E, denoted en for
n = 1, . . . , N , with the scalars ant for n = 1, . . . , N and t = 1, . . . , T being
the entries of A. The input space X is the space spanned by the vectors xt,
as well as en. To estimate the unknown matrices E and A, one concentrates
on the minimization of the Frobenius squared error norm 1

2‖X −EA‖2F , under
nonnegativity constraints. In its vector-wise formulation, the objective function
to minimize is

JX (E,A) =
1

2

T∑

t=1

‖xt −

N∑

n=1

ant en‖
2, (1)

where the residual error is measured between each input vector xt and its ap-
proximation

∑N

n=1 anten in the input space X . The objective function can be
optimized by the two-block coordinate descent scheme, which alternates between
the elements of E or of A, by keeping the elements in the other matrix fixed.

We revisit also a kernel-based NMF presented in our recent works [5, 9].
Consider a nonlinear function Φ(·) that maps the columns of matrices X and
E, from the input space X to some feature space H. Its associated norm
is denoted ‖ · ‖H, and the corresponding inner product in the feature space
takes the form 〈Φ(xt),Φ(xt′)〉H, which can be evaluated using the so-called
kernel function κ(xt,xt′) in kernel machines. Applying the vector-wise NMF
model in the feature space, we get the following matrix factorization model
[Φ(x1) Φ(x2) · · · Φ(xT )] ≈ [Φ(e1) Φ(e2) · · · Φ(eN )]A; or equivalently the

vector-wise model Φ(xt) ≈
∑N

n=1 ant Φ(en), for all t = 1, . . . , T . The optimiza-
tion problem consists in minimizing the sum of the residual errors in the feature
space H, between each Φ(xt) and its approximation

∑N

n=1 ant Φ(en), namely

JH(E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H

, (2)

where the nonnegativity is imposed on all entries of E and A. By analogy to
the linear case, a two-block coordinate descent scheme can be investigated to
solve this optimization problem.
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3 The proposed bi-objective NMF

We propose to minimize the bi-objective function [JX (E,A) JH(E,A)], un-
der the nonnegativity of the matrices E and A. The decision solution, of size
LN + NT , corresponds to the entries in the unknown matrices E and A. We
adopt the well-known sum-weighted approach [7, 8], proposed in multiobjec-
tive optimization, to solve this bi-objective problem. This approach converts
a multi-objective problem into a set of single-objective scalar problems (i.e.,
suboptimization problems) by combining the multiple objectives. As proven
in [7], the objective vector 1 corresponding to the optimal solution belongs to
the convex part of multi-objective problem’s Pareto front. Thus, by changing
the weights among the objectives appropriately, the Pareto front of the original
problem is approximated.

To this end, we consider the following suboptimization problem αJX (E,A)+
(1 − α)JH(E,A), under the nonnegativity of the matrices E and A. Here, the
weight α ∈ [0, 1] represents the relative importance between objectives JX and
JH. It is obvious that the model breaks down to the single-objective conventional
NMF in (1) when α = 1, while the extreme case with α = 0 leads to the
kernel-based NMF in (2). Let J(E,A) = αJX (E,A) + (1− α)JH(E,A) be the
aggregated objective function for some weight α. Substituting the expressions
given in (1) and (2) for JX and JH, it becomes

J =
α

2

T∑

t=1

∥∥∥xt −

N∑

n=1

ant en

∥∥∥
2

+
1− α

2

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H

. (3)

We apply the two-block coordinate descent scheme to solve the nonconvex prob-
lem. The derivative of (3) with respect to ant is

∇ant
J = α

(
−e

⊤

nxt+

N∑

m=1

amt e
⊤

n em

)
+(1−α)

(
−κ(en,xt)+

N∑

m=1

amt κ(en, em)
)
,

(4)
while the gradient of (3) with respect to en satisfies

∇en
J = α

T∑

t=1

ant

(
− xt +

N∑

m=1

amtem

)

+ (1− α)
T∑

t=1

ant

(
−∇en

κ(en,xt) +
N∑

m=1

amt ∇en
κ(en, em)

)
.

(5)

Here, ∇en
κ(en, ·) represents the gradient of the kernel with respect to its argu-

1The solution (E1,A1) is said to dominate (E2,A2) if and only if JX (E1,A1) ≤

JX (E2,A2) and JH(E1,A1) ≤ JH(E2,A2), where at least one inequality is strict. A given
solution (E∗,A∗) is a Pareto optimal if and only if it is not dominated by any other solution
in the decision space. The set of the objective vectors corresponding to the Pareto optimal
solutions forms the Pareto front in the objective space.
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ment en. A simple additive update rule takes the form

{
ant = ant = ant − ηnt ∇ant

J ;
en = en − ηn∇en

J,
(6)

where ηnt and ηn are the stepsize parameters which balance the rate of conver-
gence with the accuracy of optimization and can be set differently depending
on n and t. The additive update rule is easy to implement but the conver-
gence can be slow and very sensitive to the stepsize value; also, a rectification
function ant = max(ant, 0) is required along with the iteration to guarantee the
nonnegativity of all ant and the entries in all en.

Following the same spirit in Lee and Seung’s paper [1], we provide the multi-
plicative update rules in the case of the Gaussian kernel in the second objective
function JH. It is worth to emphasize that the multiplicative update rules for
most valid kernels can be derived using a similar procedure. The Gaussian ker-
nel is defined by κ(zi, zj) = exp( −1

2σ2 ‖zi − zj‖
2) for any zi, zj ∈ X , where σ

denotes the tunable bandwidth parameter. Its gradient with respect to en is
∇en

κ(en, z) = − 1
σ2 κ(en, z)(en−z). By incorporating these expressions into (4)

and (5), and choosing the stepsize parameter in (6) appropriately with the so-
called gradient split method 2, we obtain the following multiplicative update
rule

ant = ant ×
α e

⊤

nxt + (1− α)κ(en,xt)

α

N∑

m=1

amte
⊤

n em + (1− α)

N∑

m=1

amt κ(en, em)

, (7)

for ant, as well as

en = en ⊗

ασ2
T∑

t=1

antxt + (1− α)
T∑

t=1

ant

(
κ(en,xt)xt +

N∑
m=1

amtκ(en,em)en
)

ασ2

T∑
t=1

ant

N∑
m=1

amtem + (1 − α)
T∑

t=1

ant

(
κ(en,xt)en +

N∑
m=1

amtκ(en, em)em

) ,

(8)

for en, where the division and multiplication are element-wise.

4 Pareto front for unmixing hyperspectral images

The efficiency of the proposed bi-objective NMF is demonstrated for unmixing
two sub-images (of size 50 × 50 pixels) taken respectively from the Urban and
Cuprte image [10]. Experiments are conducted employing the weight set α ∈
{0, 0.02, ..., 0.98, 1}. For each α from the set, multiplicative update rules given
in (7)-(8) are applied, with the maximum iteration number nmax = 300. We
fix the bandwidth in the Gaussian kernel as σ = 3.0 for the Urban image, and
σ = 2.5 for the Cuprite image. To approximate the Pareto front with a discrete
set of points, we operate as follows: For each value of the weight α, we obtain a
solution (endmember and abundance matrices) with the multiplicative update

2The gradient split method decomposes the expression of the gradient into the subtraction
of two nonnegative terms, i.e., ∇en

J = P −Q, where P and Q have nonnegative entries.
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Fig. 1: Illustration of the approximated Pareto front in the objective space. The
objective vectors of the non-dominated solutions (42 for the Urban image, 28 for
the Cuprite image), marked in red, approximate a part of the Pareto front; the
objective vectors of the dominated solutions (9 for the Urban image, 23 for the
Cuprite image) are marked in blue.

rules (7) and (8); by evaluating the objective functions JX and JH at this
solution, we get a single point in the objective space. The approximated Pareto
front for the Urban and the Cuprite images are shown in Fig. 1(a) and Fig. 1(b),
respectively. We observe the following:

1) For both images under study, solutions generated with α = 1 and α = 0 are
dominated, since all the solutions on the Pareto front outperform them, with
respect to both objectives. This reveals that neither the conventional linear
NMF nor the nonlinear Gaussian kernel NMF best fits the studied images.
On the contrary, the Pareto optimal solutions, which result in the points on
the Pareto front, provide a set of feasible and nondominated decompositions.

2) Theoretically, the minimizer of the suboptimization problem is a Pareto op-
timal for the original multiobjective problem. In practice, we obtain 9 and
23 (out of 51) dominated solutions for the Urban and the Cuprite images, re-
spectively. This phenomenon, however, is not surprising and could be caused
by the failure of the solver in finding a global minimum [6].

3) An even distribution of weight α between [0, 1] do not lead to an even spread
of the solutions on the approximated Pareto front. Moreover, the nonconvex
part of the Pareto front cannot be attained using any weight. It is exactly
the case in Fig. 1(b); in Fig. 1(a), a trivial nonconvex part between α = 0.3
and α = 0.5 on the approximated Pareto front is probably resulted from the
nonoptimal solution of the suboptimization problem. These are two main
drawbacks of the sum-weighted method.

Due to the page limitation, we omit the unmixing results comparison with the
state-of-the-art methods. Relative results in terms of the reconstruction errors
in both input and feature spaces, as well as the resulting endmembers with their
corresponding abundance maps, can be found in the extended paper [11]. The
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obtained approximation of Pareto front is of high value. On one hand, it provides
a set of Pareto optimal solutions for the user, instead of a single decomposition.
On the other hand, an insight of the tradeoff between objectives JX and JH
reveals the underlying linearity/nonlinearity of the data under study.

5 Conclusion

This paper presented a novel bi-objective nonnegative matrix factorization by
exploiting the kernel machines, where the decomposition was performed simulta-
neously in input and feature space. The multiplicative update rules were derived.
The performance of the method was demonstrated for unmixing well-known hy-
perspectral images. The resulting Pareto front was analyzed. As for future
work, we are extending this approach to include other NMF objective functions,
defined in the input or the feature space. Considering simultaneously several
kernels, and as a consequence several feature spaces, is also under investigation,
following the wide study in multiple kernel learning [12].
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