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Abstract. Domain adaption for semi-supervised learning is still a chal-
lenging task. Indeed, available solutions are often slow and fail to pro-
vide relevant interpretations. Here we propose a new algorithm to solve
this problem of semi-supervised domain adaptation efficiently, by using
an adapted combination of transportation algorithms. Our empirical evi-
dence supports our initial intuition, showing the interest of the proposed
method.

1 Motivation

Statistical learning usually makes the assumption that training and testing data
are drawn from the same distribution. Dataset shift occurs when this assumption
is violated [for a detailed presentation see 1]. In that case, the problem amounts
to finding a transformation that transports data and learned structures from a
training domain, toward a test domain. This is the problem of domain adap-
tation (DA). Our work focuses on a particular case of domain adaptation for
supervised learning, when a subset of the target labels is known. This problem
is referred as semi-supervised domain adaptation.

An interesting solution to semi-supervised domain adaptation has been in-
troduced by Gong et al. [2] providing state-of-the-art results. Their solution
is a kernel-based method that takes advantage of directly exploiting data low-
dimensional structures. This approach is also interesting because it facilitates
comparisons. Indeed, it focuses only on data domain adaptation, regardless the
classifier used to perform the supervised classification task. However, in their ap-
proach, dimension reduction used is computationally expensive and leads to the
loss of data interpretability. Inspired by [3], we propose to address this domain
adaptation issue by using an efficient and easy to parallelize optimal transport
algorithm, adapted for semi-supervised domain adaptation. Furthermore, our
method can be physically interpreted since links between source and target data
are explicit.

Before presenting our method, some notations have to be introduced. Ob-
served input in the source domain is Xs of size ns observations × d variables
associated with the probability distribution μs while Y s ∈ Lns denotes the asso-
ciated labels, L being the discrete set of all possible labels. Analogously, (Xt, Y t)
denote data in the target domain of size nt associated with the probability dis-
tribution μt.
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In semi supervised learning, the target domain is assumed to be split into
two subsets depending on whether or not target label is known. The known part
is (Xk, Y k) while (Xu, Y u) denotes the unknown (with Y u unobserved), so that
the training set is (Xa, Y a) = (Xs∪Xk, Y s∪Y k) of size na. In [3], unsupervised
domain adaptation is seen as the optimal transport of the underlying distribution
of sources μs atXs towards target μt distribution atXt. The associated (Monge-
Kantorovitch) optimal transport problem can be written as:

P � = argmin
P∈U(μs,μt)

〈P,M〉F , (1)

with U(μs, μt) :=
{
P ∈ R

ns×nt | P1 = μs; PT1 = μt
}
the set of possible trans-

portation between μs and μt, 1 the all-ones vector, 〈•, •〉F being the Frobenius
inner product and M a cost matrix encoding the distance between samples of
source and target domains (typically Mij = ‖Xs

i,•−Xt
j,•‖22). This article propose

to extend this idea to the semi-supervised domain adaptation problem.

2 Algorithm

2.1 Background

In [4], Cuturi proposes to solve the optimal transportation between two his-
tograms (μs, μt) adding an entropic penalization, that is, for a given λ > 0:

Pλ = argmin
P∈U(μs,μt)

〈P,M〉F − λ h(P ), (2)

with h(P ) = −
ns∑

i=1

nt∑

j=1

Pij log(Pij) the element wise entropy function. This

formulation has two advantages: its solution is smoother than the one of (1) and
it can be solved in a fast and easy to parallelize way (with the Sinkhorn algorithm
see [4] for details). Since, this formulation does not take into consideration the
labels of the source domain, [3] introduces a new term penalizing the mixing of
source labels by promoting group sparcity:

Pλ,ν = argmin
P∈U(μs,μt)

〈P,M〉F − 1
λ h(P ) + ν

nt∑

j=1

∑

c∈L

‖ P (Ic, j) ‖pq , (3)

where Ic is the index of the source points of label c ∈ L, and (λ, ν) a couple of
given positive hyper-parameters.

2.2 Semi-supervised domain adaptation

Algo 1. A first idea to solve the semi-supervised domain adaptation problem
is to apply (3) to transfer the underlying distribution of Xs onto the one of Xt,
using the source labels Y s. We will refer to this method as algo 1. But this
global transfer doesn’t make use of Y k, the known labels in the target domain.
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Algo 2. A way to take advantage of our knowledge of label is to, instead of
transferring the whole distribution, transfer all the conditional distributions with
repeat to the classes of Xs onto Xk, class by class. This can be done by applying
(2) as many times as there are classes. We call this method algo 2.

Algo 3. However, especially when the number of classes is important and the
number of points in each class is small, this can lead to wrong solutions. In that
case we assume that it is easier to estimate the overall transfer of Xs only onto
Xk than the one of the conditional distribution. Yet the information contained
in the labels should be used. So we propose to start with transferring globally Xs

only onto Xk using (2), and then to use the information provided by the labels
in a post treatment. The idea is to force the transfer class by class by removing
parts of the transfer matrix P (solution of 2) associated with two different classes
and by distributing related information. As we know that optimal transport only
takes into account the proportionality between cost coefficients, we allocate the
sum of all Pij that should be equal to zero, proportionally to the magnitude of
the relevant one. Given matrix P , the post treatment provides a matrix P 0 such
that:

P 0(i, j) =

{
0 if Y s

i �= Y k
j

sjP (i, j) else

where sj is set such that

ns∑

j=1

P 0(i, j) =

ns∑

j=1

P (i, j). This method is algo 3.

Algo 2b and 3b. To get better estimates of the underlying density distribution,
we had the idea to adapt also the source data Xs to Xu the target where the
labels are unknown. We propose to do so by computing the optimal transport
of Xk the target data with known labels towards Xu the target where the labels
are unknown, and apply this transport to the projection of Xs onto Xk. This
amounts to solving two independent transportation problems:

• first, transport from the source to the target where the labels are known
using P 0 (note this can be done by either algo 2 or 3),

• second, transport from the target where the labels are known to the target
where the labels are unknown with P 1.

On the second part, since Xk labels are known, we can use the algorithm pro-
posed in (3). Errors due to this transportation should be insignificant (the two
domains are in fact the same). Only the class balance may eventually change.
Projection of source to the target domain can be written as a weighted barycen-
ter of data Xu:

Xs→t = diag((P 01)−1)P 0diag((P 11)−1)P 1Xu.

This two step method is referred as respectively algo 2b and 3b when resp. algo
2 or 3 is used in the first phase.
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2.3 Implementation considerations

The use of these methods require the knowledge of the distance matrix M and
histograms μs and μt. The euclidean distance has been used for M . Regarding
the histograms, as μs represent the distribution of source points, one can simply
use μs(i) =

1
ns
. But the Parzen-Rozenblatt estimator is recommended by [3]:

μs(i) =

ns∑

j=1

kσ(X
s
i,•, X

s
j,•)

ns∑

i=1

ns∑

j=1

kσ(X
s
i,•, X

s
j,•)

,

where kσ(•, •) is the gaussian kernel. Albeit, it is said that σ have little incidence
on the result, so we set σ to 1.

3 Experiment

3.1 Protocol and dataset

To test our method, we use the CaltechOffice dataset for semi-supervised learn-
ing1. This image dataset has been designed for benchmarking domain adapta-
tion algorithm [2]. This dataset is composed of four domains (Amazon, Caltech,
Webcam and DSLR), each divided into 10 classes. Images are represented by
normalize surf [5] histograms of d = 800 bins, domains are subsequently inde-
pendently zscored (zero mean and unitary variance). To facilitate comparisons,
we follow the same protocol as in [2]:

1. the source domain has ns = 20 examples except for DSLR where ns = 8 ;
2. the target domain is divided into 2 parts:

- label data with nk = 3 labeled examples per target category ;
- the remaining data is unlabeled. It is the real testing set ;

3. first, source domain is adapted to target domain by one of the proposed
algorithm and then decision is made by a 1-Nearest Neighbor classifier ;

4. each experiment is repeated 20 times.

We also set λ = 1
100 and ν = 1 for all experiment.

3.2 Results

All domain adaptation set-ups possible were done that is 4× 3 = 12 DA tasks.
For instance, A→C denotes the problem of adapting Amazon data to solve the
Caltech problem. In figure 1 are plotted the mean accuracy of different methods
on all these adaptation tasks whose numerical values are reported table 1. Table
1 also compare our results to state-of-the-art GFK method [2]. Figure 1 reveals

1 Available at http://www-scf.usc.edu/~boqinggo and
https://github.com/jhoffman/MaxMarginDomainTransforms/tree/master/DataSplits-OfficeCaltech
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that the average gain due to basic DA is around 5% (algo 1, green line), while
the gain due to semi supervised DA is about 10% (algo 2, black line) as well as
the gain of the DA post treatment which is also of the order of 10% (algo 2b, red
line)2. Our best result (algo 2b) improves the state of the art of the order of 5%.
We remark also that our approach introduce a significant increase of standard
deviation.
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Fig. 1: Mean accuracy for 12 domains adaptations

baseline algo 1 algo 2b GFK(S,A)

A → C 24.2±0.3 32.3±1.2 32.3±4.1 39.6±0.4
A → D 27.4±0.5 30.5±3.0 58.4±4.1 50.9±0.9
A → W 33.2±0.6 32.4±3.5 71.2±5.4 56.9±1.0
C → A 24.1±0.4 36.0±2.6 49.0±3.7 46.1±0.6
C → D 24.7±0.7 33.7±3.8 58.9±4.5 55.0±0.9
C → W 25.8±0.6 28.8±5.1 69.8±5.0 57.0±0.9
D → A 30.0±0.7 32.6 ±1.2 49.5±3.4 46.2±0.6
D → C 21.7±0.7 31.4±1.2 33.0±3.0 33.9±0.6
D → W 55.0±0.7 80.4±2.3 71.4±3.3 80.2±0.4
W → A 30.2±0.6 35.5±1.7 49.7±3.2 46.2±0.7
W → C 20.9±0.5 30.5±2.5 30.2 ±4.4 32.3±0.6
W → D 46.3±0.7 71.4±3.0 58.5±5.4 74.1±0.9

Median 26.6 32.5 54.1 48.6

Table 1: Mean accuracies for a baseline (kNN with no adaptation) and different
DA algorithms including state of the art (GFK) and the best method proposed
here (algo 2b). Best results are in bold.

2We choose not to report results for algo 3 and algo 3b because they are very close to those
of algo 2 and algo 2b.
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4 Speed up

The method providing the best results and therefore the one we recommend,
algo 2b, is quite slow and take 74 s for running all the experiments versus
28 s with algo 13. This time complexity is due to our second stage. In [3],
nt∑

j=1

∑

c∈L

‖ P (Ic, j) ‖p=0.5
q=1 is solved by a sub-gradient since (•)0.5 is non-differen-

tiable. We can smooth this with p = 2, leading to a convex and differentiable
regularization term. The drawback is a group sparsity is less held in account, but
our intuition is that this is not so important from the moment that histograms
are drawn from the same domain. As expected, the running time reduces signif-
icantly (29 s) at the price of a very small decreasing of the mean accuracy.

5 Conclusion

In this paper was presented a new method for semi-supervised domain adap-
tation using a combination of slightly modified optimal transport algorithms.
It performed competitive results on domain adaptation datasets. Nevertheless,
high variance is observed on our experiments, thus possible improvements are the
explanation and reduction of this variance. Our study focuses on the transport
of source domain to target domain, it will be then interesting to study the other
way, this may allow to learn once a complex classifier and then adapt testing
data.
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