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Abstract. Soft clustering algorithms can handle real-life datasets bet-
ter as they capture the presence of inherent overlapping clusters. A soft
kernel spectral clustering (SKSC) method proposed in [1] exploited the
eigen-projections of the points to assign them different cluster member-
ship probabilities. In this paper, we detect points in dense overlapping
regions as overlap points. We also identify the outlier points by exploit-
ing the eigen-projections. We then propose novel ranking techniques using
structure and similarity properties in the eigen-space to rank these overlap
and outlier points. By ranking the overlap and outlier points we provide
an order for the most and least influential points in the dataset. We
demonstrate the effectiveness of our ranking measures on several datasets.

1 Introduction
In the modern era where data can easily be collected from heterogeneous sources
most real-life datasets have structure comprising of overlapping clusters. This
has led to unsupervised learning models referred as Soft clustering methods
[2, 3] which assign multiple cluster memberships to individual points in the data.
These techniques can better deal with overlapping clusters and provide more
insight about the data. For instance, when studying gene microarray datasets,
genes that have more than one function by coding for proteins that participate
in multiple metabolic pathways should belong to multiple overlapping clusters.

A kernel spectral clustering (KSC) method was proposed in [4] whose main
advantage is its powerful out-of-sample extensions property which allows to gen-
erate eigen-projections for large scale data and infer their hard cluster affilia-
tion. Recently, the KSC technique was extended to soft kernel spectral cluster-
ing (SKSC) method in [1]. The SKSC technique exploits the properties of the
eigen-projections of the data to assign them multiple cluster memberships. This
allows us to distinguish overlap points in dense overlapping regions from points
which primarily belong to one cluster. Using the eigen-projections of the data
it also possible to locate the outlier points.

The overlap points are more influential in the data as they have properties
similar to multiple clusters in the data. These overlap points act as connectors
between distinct clusters in the data. In the case of genes, the overlap genes are
more important as they are part of multiple metabolic pathways and can provide
more insight about the gene expressions. On the other hand, outlier points are
the least influential points in the data and act as anomaly. They have properties
which are dissimilar from most of the points in the data.

In this paper, we propose separate techniques to rank the overlap and outlier
points in the dataset exploiting the structure and similarity properties of the
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eigen-projections of these points. We develop an overlap score where higher
rank for an overlap point is given by a lower overlap score and find that this
overlap point is most similar to all the points in the data. We also develop an
outlier score where a higher rank for an outlier point is given by higher score
and find that this outlier point is least similar to all the points in the data.

2 Related Work
In information retrieval (IR) ranking is performed to provide an order in which
the results corresponding to a particular query is displayed. A survey on various
ranking techniques in information retrieval is provided in [5]. However, in IR
ranking is based on similarity (i.e. in a classification setting) and overlap and
outlier points are not generally considered while displaying the search results.
There also exists a set of clustering algorithms which use ranking as a distance
measure to obtain hard and soft clustering for datasets [6, 7]. To the best of our
knowledge, this is the first approach where a soft clustering method is applied to
obtain overlap and outlier points in the data and then these points are ranked
to provide an ordering to the most and least influential points.

3 Identifying and Ranking Overlap & Outlier Points
We first briefly describe the SKSC [1] method. Given Ntr training points D =
{xi}Ntr

i=1, xi ∈ R
dx and k clusters, the KSC problem [4] can be stated as follows:

min
w(l),e(l),bl

1
2

k−1∑

l=1

w(l)T

w(l) − 1
2N

k−1∑

l=1

γle
(l)T

D−1
Ω e(l) (1)

such that e(l) = Φw(l) + bl1Ntr (2)

where e(l) = [e(l)
1 , . . . , e

(l)
Ntr

]T are the projections vectors related to the Ntr train-
ing points, D−1

Ω ∈ R
Ntr×Ntr is the inverse of the degree matrix associated to the

kernel matrix Ω, Φ is the Ntr × nh feature matrix Φ = [ϕ(x1)T ; . . . ; ϕ(xNtr)T ],
ϕ : R

dx → R
nh is the mapping from input space (dx) to a high-dimensional

feature space (nh), bl are bias terms, and γl ∈ R
+ are regularization constants.

The corresponding dual is an eigen-decomposition problem which results in a
dual solution given by e(l) = Ωα(l) + bl1Ntr .

In SKSC method [1], KSC was used to first find a division of the data into k
hard clusters. This clustering was then refined by re-calculating the prototypes
in e = [e(1), . . . , e(k−1)]. In particular, given the projections for the training
points ei, i = 1, . . . , Ntr and the initial KSC hard cluster assignments (ci), the
new cluster prototypes s1, . . . , sp, . . . , sk, sp ∈ R

k−1 became sp = 1
np

∑np

i=1 ei

where np is the number of points assigned to cluster p during the initialization
step by KSC. We then calculated the cosine distance (as proposed in [1]) between
the i-th point projection and a prototype sp as dcos

ip = 1 − eT
i sp/(||ei||2||sp||2).

The probabilistic membership of point i to cluster p was expressed as:

m
(p)
i =

∏
j �=p dcos

ij∑k
l=1

∏
j �=l dcos

ij

(3)

with
∑k

l=1 m
(l)
i = 1. This probability indicates certainty of SKSC membership.

For model selection we use average membership strength (AMS) criterion [1].
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3.1 Identifying Overlap & Outlier points
Using the membership probability, we devise a simple heuristic to detect overlap
and outlier points. A point i is considered to lie in the overlap region between
two or more clusters if its maximum soft membership maxp m

(p)
i < 0.5.

One of the characteristics of an outlier point is that its similarity w.r.t. all
the training points (Ntr) is close to 0. Using this property, a point is detected
as outlier if its similarity with all the training points is small and its maximum
soft cluster membership is higher than a threshold as it would have tendency to
primarily belong to one cluster, i.e.

∑Ntr
i=1 Ωtest

ij < 10−2Ntr and maxp m
(p)
i > 0.5.

We experimented with different values of this threshold and found that for values
greater than 0.5 the set of outliers remain more or less consistent.
3.2 Ranking Score Functions
After identifying the overlap and outlier points, we create overlap set Dov =
{xi}Nov

i=1 and outlier set Dout = {xj}Nout

j=1 . Here Nov and Nout represent the
number of overlap and outlier points in the data respectively. We also create
overlap projection set Eov = {ei}Nov

i=1 and outlier projection set Eout = {ej}Nout

j=1 .
We maintain hard and soft cluster memberships, Cov = {ci}Nov

i=1 , ci ∈ R and
Mov = {mi}Nov

i=1 , mi ∈ R
k for overlap points. Similarly, we maintain hard

and soft cluster memberships Cout = {cj}Nout

j=1 , cj ∈ R and Mout = {mj}Nout

j=1 ,
mj ∈ R

k for outlier points.
The overlap score consists of 3 components. The first component captures

structural information and is given by: Δk(ei) =
∑k

p=1 ‖ei − sp‖2 ×mp
i . It mea-

sures the distance of each overlap projection (ei ∈ Eov) from a central projection
of all the clusters giving more emphasis to the clusters to which it has higher
probability of belonging (mi ∈ Mov).

The second component comprises actual Euclidean distance of an overlap
projection from all the projections weighted by extent of similarity. This com-
ponent is inspired from an information retrieval aspect. In order to calculate
this metric for all points with hard cluster membership p, we first estimate
Δc(ei, p) = [‖ei − el‖2 s.t. cl = p]. We then sort this vector and construct a
weight vector ωc(p) = [np, . . . , 1]ᵀ. More weights is given to smaller distance
than to larger distance i.e. if an overlap projection is close to many projections
in cluster p then it should have lower distance from that cluster. Finally, this
component is estimated as Δval(ei, p) = 2×Δc(ei,p)×ωc(p)

np×(np+1) . The overall weighted

distance for the ith overlap projection (ei) is: Δω(ei) =
∑k

p=1 Δval(ei, p) × mp
i .

The third component comprises of the similarity of an overlap point xi ∈ Dov

from all the points in the dataset in terms of the kernel matrix Ω. An overlap
point has high similarity value w.r.t. most of the points in the data. This helps
to distinguish an influential overlap point from a mis-categorized outlier point
which has low similarity value w.r.t. all points in the data. This component is
represented as: Sval(xi) =

∑N
l=1 Ωil.

We then combine these 3 components to devise a scoring scheme which gives
higher rank to overlap points which are part of dense overlapping regions. The
overlap score for the ith point in the overlap set Dov is calculated as:
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scov(i) =
Δk(ei) × Δω(ei)

Sval(xi)
. (4)

In the score function the distance terms are kept in the numerator and the
similarity term is used as the denominator. We want to minimize the distance
terms and maximize the similarity term for an overlap point in the score function.
Thus, smaller values of scov(·) give higher rank indicating these points have
characteristics similar to points in multiple clusters and are more influential.

We use the property that the similarity of an outlier point w.r.t. all the
points in the data is extremely small i.e. Ωij ≈ 0, i = 1, . . . , N ,j = 1, . . . , Nout,
xi ∈ D and xj ∈ Dout. Using this property and dual solution of KSC, we
conclude that the eigen-projection of an outlier point can be given as: ej ≈ b,
where b = [b1, . . . , bk−1]ᵀ. In the ideal case, an outlier will have 0 similarity
w.r.t. all the points in the data and its eigen-projection will be exactly = b.
Using this notion we define a distance measure for outlier points as: Δout(ej) =∑k

p=1(‖ej − sp‖2 − ‖b − sp‖2) × mp
j .

Here ej ∈ Eout and mj ∈ Mout. This metric evaluates the distance of an
outlier eigen-projection (ej) from the cluster prototypes (sp) and calculates the
same for the bias vector (b). It gives more weight (mp

j ) to the difference in
distance for the cluster to which this outlier actually belongs. This metric is
more robust than a simple Euclidean distance (‖ej − b‖2) as it includes the
influence of the soft clustering memberships for outlier points. The smaller
the value of this distance measure (Δout(ej)), the lower the significance of that
outlier. However, these values can be quite small (≈ 0) at times and difficult to
interpret. Hence, we define the scout(·) function as:

scout(ej) = 1 − Δout(ej). (5)
Larger the value of this scout(·) function for an outlier higher the rank, since the
similarity of this outlier w.r.t. any point in the dataset is low. Figure 1 shows
the location of the overlap and outlier points detected by SKSC method in the
input space and eigen-space for a synthetic 3 overlapping Gaussians dataset.

4 Experiments
We conducted experiments on 10 datasets obtained from http://cs.joensuu.
fi/sipu/datasets/. Figure 2 shows the model selection procedure, the over-
lap, outlier points and the clustering generalization for A1 and Mopsi Finland
datasets. Table 1 shows number of overlap and outlier points detected by SKSC
method in these datasets. Outlier points are ranked based on the proposed scout

for 3 datasets in Table 2. The higher the scout value lesser the similarity of
that point w.r.t. any point in the dataset. It allows us to easily identify least
influential points in the dataset.

We compare our proposed scov based ranking with distance based ranking
technique (D-Rank or D-R) [6] and information retrieval (similarity) based rank-
ing technique (IR-Rank or IR-R) [5] as shown in Table 3 for A1, Mopsi Finland
and Mopsi Joensuu datasets. We calculate the Kendall τ ranking correlation
between the ranking order of proposed method with D-Rank and IR-Rank. For
A1, Mopsi Finland and Mopsi Joensuu datasets the correlation values are (−0.1,
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Fig. 1: Structure of the overlap and outlier points in the eigen and input space for a synthetic
3 overlapping 2-dimensional Gaussians.
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Fig. 2: Tuning of SKSC algorithm, detection of overlap and outlier points and cluster gener-
alization for 2 datasets obtained from http://cs.joensuu.fi/sipu/datasets/.

−0.005), (0.123, 0.218), (0.355 and 0.45) w.r.t. D-Rank and IR-Rank respec-
tively. In general we observe low correlation between the rankings.

We ran our proposed approach on a NIPS dataset comprising 1, 500 pa-
pers available at https://archive.ics.uci.edu/. No outlier documents and
188 overlap documents were detected using SKSC [1]. The most influential pa-
per was “Adaptive Development of Connectionist Decoders for Complex Error-
Correcting Codes (ECC)”. ECC is a popular approach to handle multi-class

541

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.

http://cs.joensuu.fi/sipu/datasets/
https://archive.ics.uci.edu/


problems for many supervised learning techniques making it highly influential.

Dataset N dx k Nov Nout

A1 3,000 2 20 281 165
Aggregation 788 2 5 32 -
Europe 169,308 2 2 - 81
Iris 150 4 3 3 -
Mopsi Finland 13,467 2 6 510 1
Mopsi Joensuu 6,014 2 4 35 31
R15 600 2 15 11 5
Seeds 210 7 3 5 -
3 Gaussians 1,500 2 3 38 13
Wine 178 13 3 6 -

Table 1: Nov and Nout represent
number of overlap and outlier points
and ‘-’ means that no overlap or no
outlier point.

A1 dataset Europe dataset Mopsi Joensuu
Point Id scout Point Id scout Point Id scout

1. 864 0.999 1. 163927 0.947 1. 5732 1
2. 2951 0.996 2. 162749 0.929 2. 5734 0.998
3. 2734 0.981 3. 956360 0.855 3. 5728 0.998
4. 2042 0.875 4. 157332 0.827 4. 5731 0.996
5. 1263 0.710 5. 151013 0.788 5. 1951 0.867
6. 1420 0.579 6. 735160 0.785 6. 1146 0.865
7. 2935 0.574 7. 126906 0.784 7. 1949 0.865
8. 993 0.565 8. 735140 0.782 8. 1647 0.864
9. 1983 0.518 9. 144385 0.781 9. 1652 0.864
10. 2006 0.482 10. 95557 0.781 10. 5772 0.853

Table 2: Outlier ranking results showing the least
influential outlier points in order produced by the
proposed scout for A1, Europe and Mopsi Joensuu
dataset.

A1 dataset Mopsi Finland dataset Mopsi Joensuu dataset
Point Id scov D-R IR-RPoint Id scov D-R IR-RPoint Id scov D-R IR-R
1. 2092 47.268 160 99 1. 3172 53.478 240 65 1. 5051 27.273 1 1
2. 2000 47.895 153 83 2. 3174 53.48 239 66 2. 1183 28.597 10 5
3. 2086 48.34 150 39 3. 3078 53.483 235 67 3. 3911 28.772 12 4
4. 2055 49.625 146 57 4. 3105 53.484 238 69 4. 3910 28.777 13 3
5. 2093 49.999 157 30 5. 2662 53.485 236 68 5. 1184 28.854 14 2
6. 2011 50.043 166 24 6. 3254 53.505 234 70 6. 1721 29.068 17 6
7. 2032 52.509 170 21 7. 3462 53.522 237 71 7. 1978 67.001 3 9
8. 2069 53.924 149 92 8. 458 69.394 162 1 8. 1634 67.009 4 10

Table 3: Ranking results showing the top 8-ranked overlap/influential points produced by
proposed scov for A1, Mopsi Finland and Mopsi Joensuu datasets and its comparison with
D-Rank (D-R) and IR-Rank (IR-R).

5 Conclusion
We proposed a technique to identify and rank overlap and outlier points in data
by exploiting the structure and similarity property of these points in eigen-space
using the SKSC method. In future, we would like to quantify the relevance of
the proposed ranking scheme w.r.t. other ranking techniques.
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