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Abstract. Standard single-objective methods such as value iteration are
not applicable to multi-objective Markov decision processes (MOMDPs)
because they depend on a maximization, which is not defined if the rewards
are multi-dimensional. As a result, special multi-objective algorithms are
needed to find a set of policies that contains all optimal trade-offs between
objectives, i.e. a set of Pareto optimal policies. In this paper, we propose
Pareto local policy search (PLoPS), a new planning method for MOMDPs
based on Pareto local search (PLS) [3]. This method produces a good set of
policies by iteratively scanning the neighbourhood of locally non-dominated
policies for improvements. It is fast because neighbouring policies can be
quickly identified as improvements, and their values can be computed
incrementally. We test the performance of PLoPS on several MOMDP
benchmarks, and compare it to popular decision-theoretic and evolutionary
alternatives. The results show that PLoPS outperforms the alternatives.

1 Introduction
Many real-world planning problems require reasoning about future states and
rewards, while considering multiple possibly conflicting objectives [5]. An example
is maintenance scheduling on a traffic network while minimising both the cost
of operations and the hindrance for traffic. These problems can naturally be
expressed as a multi-objective Markov decision process (MOMDP). In MOMDPs,
values of policies are vectors, making it impossible to maximise over them. Instead,
the values are compared based on a dominance relationship, that states that
the scalarised utility of a value vector is always better than the value of another
with respect to a family of utility functions or scalarization functions. The most
common such relationship is the Pareto dominance relationship defined with
respect to the family of monotonically increasing scalarization functions. However,
for arbitrary monotonically increasing scalarization functions, traditional dynamic
programming methods for solving single-objective MDPs are not applicable
because the Bellman optimality equation that such methods solve relies on the
assumption of additive returns, which does not hold for the scalarised values [5].
Therefore, alternative approaches are needed to solve MOMDPs.

We propose a new algorithm, called Pareto local policy search (PLoPS), that
is based on Pareto local search [3] and quickly approximates the Pareto front
of deterministic stationary policies. To do so, PLoPS performs an iterated
neighbourhood search for policies with known values. PLoPS is fast because it
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exploits the fact that neighbouring policies usually have similar values, and that
it is easy to check whether a policy π with a known value is dominated by a
neighbour π′.

We show empirically that PLoPS quickly finds good approximations on
two known MOMDP benchmarks. We compare the performance of PLoPS to
evolutionary and decision-theoretic alternatives, and show PLoPS outperforms
them.

2 Related Work
Several planning methods exist for calculating the Pareto front of deterministic
stationary policies in MOMDPs. CON-MODP [9, 10] is a multi-objective planning
algorithm based on value iteration for multi-objective dynamic programming,
that can only be used for MOMDPs with a deterministic transition function.
CON-MODP can calculate the Pareto front of deterministic stationary policies
by defining a CON operator that forces policies to be stationary after Bellman
backups.

Multi-objective Monte Carlo tree search (MO-MCTS) [8] extends Monte-Carlo
tree search (MCTS) to multi-objective sequential decision making, and can be
used for both planning and learning. It uses a hypervolume indicator instead of
the upper confidence bound often used in single-objective MCTS.

3 Background
In this paper, we aim to find the Pareto front of deterministic stationary policies
in MOMDPs. An MOMDP is a tuple 〈S,A,P,R, µ, γ〉, where S is a finite set of
states, A is a finite set of actions, P : S ×A× S → [0, 1] is a transition function
that specifies for each state and action the probability of reaching the next
state, and R : S ×A× S → RD is the D-dimensional reward that specifies the
immediate reward for each state, action and next state. µ denotes the probability
distribution over the initial states and γ is a discount factor that specifies the
relative importance of immediate rewards and future rewards.

A deterministic stationary policy π is a mapping from states to actions.
Because we only consider this type of policy, we refer to these simply as policies.
The value of a policy π can be calculated using policy evaluation (PE) [6]1. PE
repeatedly applies Bellman backups to the value Vπ(s) of each state s until
convergence. This update is defined by:

Vπ
t+1(s)←

∑
s′

Pπ(s)ss′

[
Rπ(s)
ss′ + γVπ

t (s′)
]
, (1)

where t indicates the number of iterations in PE. How many iterations it takes
for PE to converge depends on the initialisation of the values at iteration 0.
If the initial estimates Vπ

0 (s) are close to the true values, fewer iterations are
required. PLoPS exploits this by initialising these values to known values of
similar policies.

The stateless value for a policy π is defined as Vπ =
∑
s∈S µ(s)Vπ(s). A policy

π Pareto dominates a policy π′ when its value is at least as big in all objectives, and

1Note that [6] defines PE for single-objective MDPs, but the algorithm is identical for
MOMDPs.
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bigger in at least one objective: Vπ � Vπ′
= ∀i

[
Vπ
i ≥ Vπ′

i

]
∧∃j

[
Vπ
j > Vπ′

j

]
. If

π neither dominates π′, nor is dominated by π′, i.e., ¬(Vπ′ � Vπ)∧¬(Vπ � Vπ′
),

π and π′ are incomparable. A solution to an MOMDP is a Pareto set P , a set of
policies that are not dominated by another policy in P . The Pareto front P ∗

is defined as: P ∗ =
{
π ∈ Π : ¬∃(π′ ∈ Π) Vπ′ � Vπ

}
, where Π is the set of all

possible policies. Two sets of policies can be merged into a Pareto set by taking
the union of the sets and removing all dominated solutions.

3.1 Pareto Local Search
Pareto local search (PLS) methods [4] are fast multi-objective optimisation
algorithms that aim to find the Pareto front of undominated solutions and have
been applied to a wide variety of optimisation problems. Planning in MOMDPs
can be seen as a multi-objective optimisation problem, in which a solution is
a policy, the fitness of a policy π is its multi-objective stateless value Vπ, and
fitness evaluations are done by policy evaluation.

PLS algorithms use the Pareto dominance criterion to explore the neighbour-
hood of policies. We define the neighbourhood of a policy π, N (π), as the set of
policies that can be made by changing one action for a single reachable state in π:

N (π) =
{
π′ ∈ Π : ∃s ∈ Sπ

[
π(s) 6= π′(s) ∧ ∀(s′ 6= s)

[
π(s′) = π′(s′)

]]}
, (2)

where Sπ is the set of states that can be reached by following policy π. PLS
algorithms can be fast if it is computationally cheap to evaluate solutions that
are similar to (or in the neighbourhood of) an already evaluated solution. PLS
algorithms iteratively search the neighbourhood of Pareto undominated solutions
for improvements in order to improve upon an intermediate approximate Pareto
front. In this paper, we use queued Pareto local search (QPLS) [3], which is
a state-of-the-art PLS algorithm, as the basis for PLoPS. QPLS can also be
deployed within a genetic scheme to escape local optima [3], yielding genetic QPLS
(GQPLS). Note that in general any PLS algorithm can be used by performing
the adjustments proposed in the next section.

4 Method
In this section, we describe how PLS algorithms, specifically GQPLS, can be
adapted to be more efficient in MOMDP settings, yielding our main contribution:
Pareto local policy search (PLoPS).

Following the standard approach for PLS algorithms, PLoPS starts with N
random policies, which are evaluated using PE. Following QPLS, these random
policies and values are put in a queueQ of candidate solutions. Policies are popped
off this queue one by one. Each popped policy π is then improved, by changing
it to a policy π′ from N (π) that Pareto dominates it. These improvements are
performed iteratively, until no more improvements are possible. We thus need to
scan N (π) for policies that Pareto dominate π. Fortunately, in MOMDPs, we can
quickly check whether a neighbouring policy π′ dominates π, before completely
evaluating it.
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Theorem 1 A policy π′ ∈ N (π) that is different from π only in performing a′

rather than a in state sc, Pareto dominates π if and only if∑
s′

Pπ
′(sc)

scs′

[
Rπ′(sc)
scs′

+ γVπ(s′)
]
� Vπ(sc). (3)

Proof sketch. The value of a π′ can be calculated using PE, using any initialization
of the values for the states. When we take Vπ′

t=0(s) = Vπ(s) for all states, we
observe that in the first iteration of PE for all states ∀s 6= scV

π′

t=0(s) = Vπ′

t=1(s)
(due to Equation 1). For sc, V

π′

t=1(sc) is exactly the left-hand side of Equation
3. The stateless value after one iteration in PE can thus increase iff Equation 3
holds. In subsequent iterations, the value of sc is propagated to states that can
lead to sc under policy π′, but these can only increase in objectives i for which
V π

′

i,t=1(sc) is an improvement over V π
′

i,t=0(sc), and only decrease for objectives for

which V π
′

i,t=1(sc) < V π
′

i,t=0(sc), as the transition probabilities (due to actions) for
all states but sc do not change, and the only modification can thus come via
change in the values of sc. �

After identifying a dominating policy π′ from the neighbourhood of π, N (π),
we initialise the values Vπ′

t=0(s) = Vπ(s), and continue our search from π′ by
running PE fully to calculate Vπ′

. Note that this typically requires many fewer
iterations than, e.g., a uniform initialisation for Vπ′

t=0(s) = c, with some constant
c, as the values of π and π′ are typically similar.

PLoPS improves the policy π until no further improvements can be made.
At that point, the policy is merged into an intermediate Pareto set P , which is
initially empty. New candidates are created from π by taking k incomparable
policies from N (π), which are added to the queue Q. Then, a new policy is
popped off Q and improved. This procedure repeats until the queue is empty, at
which point all solutions from the intermediate P are merged into the global P .
Finally, a new queue is filled with n (cross-)mutations sampled from P with a
probability inversely proportional to the number of occurrences of its value, and
the process is restarted. Contrary to standard GQPLS we limit the number of
solutions, n, with which to restart QPLS, because P̄ can grow unbounded and
restarting QPLS with a large queue can be slow.

5 Experiments Position Hunger

0 ←

9

Fig. 1: BA state space

In this section we give an overview of the bench-
mark problems used and then discuss the results.

5.1 Problem Setting
We evaluated the algorithms on two problem set-
tings. The stochastic (in terms of reward) Buri-
dan’s ass (BA), with an infinite horizon, and the
episodic deterministic deep sea treasure (DST).

5.1.1 Buridan’s Ass
BA [2], depicted in figure 1, is an infinite horizon MDP consisting of a 3× 3 grid,
with the agent starting in the middle. The reward vector is three-dimensional.
Food is located in the two opposing corners. The agent can move into bordering
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squares, yielding a −1 reward in the first dimension. Every time step there is a
0.9 probability for each food cache to be stolen if the agent is not adjacent to or
on that square. This does not make the food disappear, but gives a −1 reward in
the second dimension. Hunger is a state feature which increases every time step
and resets to zero when the agent is at a food square. When hunger is maximal
(nine), it stops increasing and results in a -1 reward in the third dimension.

5.1.2 Deep Sea Treasure
1

2
3

6 8 16

24 50

74
124

Fig. 2: DST state space

DST [7] is an MDP that consists of a 10×11
grid, shown in figure 2. The agent always
starts at the top left square, as indicated
by the submarine. It can move determin-
istically in every direction, but only into
grey and white squares. Each move results
into a −1 reward in the first dimension.
The maximum number of steps is 100. The
grey squares are terminal states containing
treasure whose worth is the reward in the second dimension.

5.2 Results
PLoPS was tested on these problems, using MO-MCTS2 and NSGA-II as baselines.
NSGA-II [1] is a multi-objective evolutionary algorithm that employs elitism,
uses a fast sorting algorithm, and focuses on maintaining diversity within the
population. It uses the same fitness function as PLoPS. All parameters were
empirically optimised, with MO-MCTS on DST as an exception, since the authors
propose the optimal parameters for this problem in their paper [8].

For both problems, the best settings for NSGA-II were: a population size of
100, a mutation rate of 0.1, and no crossover. For PLoPS the parameters were:
N = 5 for BA and N = 50 for DST, mutation rate 0.1, k = 2, and n = 10. For
BA, MO-MCTS was configured to have a progressive widening parameter of 2 and
an exploration vs. exploitation parameter of (100, 150, 150). The expected value
of the stochastic reward was used as a reward, in order to prevent MO-MCTS
from creating an optimistic Pareto front.

For BA, γ was set to 0.99. The reference point was set to (−200,−200,−200)
for BA and to (−100, 0) for DST. Since this MDP is deterministic, PE was
replaced with a single roll-out from the starting position.

Figures 3 and 4 show the mean and standard deviation of the hypervolume
measure averaged over 20 runs for BA and DST respectively. For BA, PLoPS finds
a significantly better approximation than all other methods (T-test: p < 0.001),
although NSGA-II almost immediately finds a good solution and has a smaller
standard deviation. MO-MCTS is outperformed as well. For DST, it can be
seen that MO-MCTS finds a bigger hypervolume on average at the start, but
PLoPS consistently finds the true hypervolume after less than a minute, whereas

2We compared two versions of MO-MCTS. The original, which computes non-stationary
policies, and a version in which it only explores stationary policies. The original was better.
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Fig. 3: Mean and standard deviation
of the hypervolume over time on BA
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Fig. 4: Mean and standard deviation
of the hypervolume over time on DST

MO-MCTS shows very little improvement after the first half minute. NSGA-II is
outperformed by PLoPS on all time steps.

We also compared against CON-MODP, which was not able to converge
for BA within 1 hour. For DST, it was considerably faster. However, while
CON-MODP finds the entire Pareto front for MOMDPs with a deterministic
transition function, it cannot handle MOMDPs with stochastic transitions [10].
Our approach (and other evolutionary methods) do not have this limitation.

6 Conclusions
This article showed that it is possible to define a neighbourhood around MOMDP
policies whose values can be evaluated quickly. We exploited this property in a
new algorithm called PLoPS that is based on QPLS. We also showed empirically
that PLoPS performs well on benchmarks compared to the state-of-the-art.
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