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Abstract. In this article we consider a median variant of the learning vector quan-
tization (LVQ) classifier for classification of dissimilarity data. However, beside
the median aspect, we propose to optimize the receiver-operating characteristics
(ROC) instead of the classification accuracy. In particular, we present a proba-
bilistic LVQ model with an adaptation scheme based on a generalized Expectation-
Maximization-procedure, which allows a maximization of the area under the ROC-
curve for those dissimilarity data. The basic idea behind is the utilization of ordered
pairs as a structured input for learning. The new scheme can be seen as a supple-
ment to the recently introduced LVQ-scheme for ROC-optimization of vector data.

1 Introduction
Learning vector quantization (LVQ) as introduced by T. KOHONEN is a popular ap-
proach for classification of vector data [1]. The basic idea of this approach is to repre-
sent the data classes by prototype vectors. Many variants of the basic Hebbian learning
scheme were developed, an up-to-date overview can be found in [2]. Yet, the main
ingredients, the optimization of the classification accuracy as well as the differentiable
data dissimilarity measure in data space for the stochastic gradient method were kept in
most of these variants.
Recently, the focus was shifted to more advanced classification goals like optimiza-
tion of sensitivity, specificity or the Fβ-measure, which are based on the evaluation
of the confusion matrix. These statistical quality measures are more adequate for
class-imbalanced training data [3]. Sensitivity and Fβ-measure are closely related to
the Receiver-Operating-Characteristics (ROC) [4], which is an important tool for per-
formance comparison of binary classifiers [5]. Moreover, ROC-curves allow an user
specific configuration of the classifier in dependence on required values of sensitivity
etc. ROC-curves are usually compared by their area under the curve (AUROC), which
should be maximum [6, 7]. LVQ-like optimization of the area under the ROC-curve
(AUROC) for vector data was recently proposed [8], but it is still depending on the
differentiability of the underlying dissimilarity measure.
Thus, the topic of LVQ-extensions for classification of dissimilarity or relational data
emerges, as such variants are already known for unsupervised vector quantization
[9, 10, 11, 12]. For relational approaches, the prototypes may be assumed as linear
combination of the data such that gradient methods can be adapted [13]. For gen-
eral dissimilarity data prototypes are restricted to be data samples. The latter strategy
is known as median-learning. First attempts for median LVQ-variants optimizing the
classification accuracy were provided in [14, 15]. In the present publication, we extend
these ideas to the AUROC optimization based on the LVQ-paradigm.
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2 Notations and Basic Concepts
In the following we suppose data objects X = {xi}i=1,...,N . We assume a binary
classification problem with the classes C = {⊕,	}. Let c(·) be the formal class label
function, which assigns to each data object the class label yi = c (xi). The matrix D
with entries dij ≥ 0 provides the object dissimilarities. Furthermore, we define the set
X = {(xi, xj)|yi = ⊕ ∧ yj = 	} of all ordered pairs of data objects generated from
X with the cardinality denoted by |X|.
The ROC was developed as a graphical tool for comparison of binary classifiers with
respect to their performance [5]. These performances are measured in terms of the true
positive rate (recall/sensitivity) ρ = TP

TP+FN and the false positive rate ϕ = FP
FP+TN

calculated according to the confusion matrix 2.

true
⊕ 	

predicted ⊕ TP FP Ñ+

	 FN TN Ñ−
N+ N− N

Table 1: Confusion matrix

If a parametrized classifier is considered, the resulting pairs of these values may be
plotted into two-dimensional diagram - the so-called ROC-curve. The areaAROC under
this ROC-curve (AUROC) is a performance measure for this parametrized classifier.
The higher the AUROC-value, the better the classifier. Assuming a binary classifier
with a classifier function µ(κ|xi) to predict the class κ for a sample xi. Then the area
AROC has a probabilistic interpretation:

AROC = P (µ(⊕|xi) > µ(⊕|xj)) (1)

for a randomly chosen ordered pair (xi, xj) ∈ X [5], which yields due to the underlying
rank statistics [16, 17]. If we define an so-called ordering function

O (xi, xj) = H (µ(⊕|xi)− µ(⊕|xj)) (2)

where H is the Heaviside function

H (x) =

{
0 if x ≤ 0

1 else
, (3)

the probability P in (1) can be estimated by

ÂROC =
1

|X|
∑

(xi,xj)∈X

O (xi, xj) (4)

as proposed in [8].

3 AUROC-Optimizing Median LVQ Classifier
In the following we develop a binary classifier for AUROC-optimization based on the
LVQ-prototype principle. However, instead of gradient learning we will develop a gen-
eralized Expectation-Maximization optimization scheme (gEM) based on a probabilis-
tic interpretation of LVQ-prototypes. Thus we suppose M prototypes θk ∈ Θ, i.e. the
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cardinality of Θ is M . Analogously as for data, cj = c (θj) returns the predefined class
label of the prototype. Further, M+ denotes the number of prototypes assigned to the
class⊕. Because of the median paradigm, the prototypes are restricted to be data points
itself. Based on the median LVQ-variant for accuracy maximization developed in [14],
the classifier function can be defined as

µ(κ|xi) =
dκ (xi)− d− (xi)

dκ (xi) + d− (xi)
(5)

where dκ (xi) denotes the smallest dissimilarity of all prototypes corresponding to class
κ and d− (xi) is the smallest dissimilarity to all prototypes assigned to the opposite
class. We introduce

Oσ (xi, xj) = fσ (µ(⊕|xi)− µ(⊕|xj)) (6)

as a smooth approximation of ordering function O (xi, xj) from (2) with fσ (z) =
1/ (1 + z/σ) being a sigmoid function. The parameter σ determines the slope. In the
limit σ ↘ 0 we get Oσ → O. For the probabilistic model to be developed in the next
steps, we define positive, bounded functions g ((xi, xj) ,Θ) = Oσ (xi, xj) + ε paying
attention to the circumstance of ordered pairs required for AUROC-optimization. The
small constant ε > 0 avoids numerical instabilities in the following. We define

K(X) = ln

∑
i,j

g ((xi, xj) ,Θ)

 (7)

as the logarithmic cost function (LCF) to be maximized instead of (1). This trick allows
to apply a generalized Expectation-Maximization-scheme for optimization as we will
explain in the following. For this purpose, we introduce the formal probability

p ((xi, xj)) =
g ((xi, xj) ,Θ)∑
i,j g ((xi, xj) ,Θ)

for an ordered data object pair (xi, xj). Thus, assuming arbitrary non-negative real
numbers γi,j fulfilling the restriction

∑
i,j γi,j = 1, which can be also interpreted as

formal probability values, we can decompose the LCF K(X) into

K(X) = L(γ,Θ) +K(γ||p) (8)

with the formal Kullback-Leibler-divergence (KLD,[18]) and the loss term

L(γ,Θ) =
∑
i,j

γi,j ln

(
g ((xi, xj) ,Θ)

γi,j

)
(9)

as shown in [19]. Hence, L(γ,Θ) is a lower bound for the LCF K(X) due to the
non-negativeness of the KLD K(γ||p). Using this property we obtain the following
maximizing strategy for the LCF K(X):
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1. Expectation-step (E-step): set

γi,j := p ((xi, xj))

⇒
K(γ||p) = 0

⇒
K(X) = L(γ,Θ)

Note that the cost function value K(X) does not change in this E-step, because
K(X) is independent from the parameters γi,j .

2. generalized Maximization-step (gM-step): take the parameters γi,j as fixed and
find new prototypes Θnew, such that:

L(γ,Θnew) ≥ L(γ,Θold)

3. Convergence criterion: if Θnew = Θold stop. Else goto 1.

We remark that the new prototypes Θnew maybe found by any search procedure. Thus it
is not required to apply a gradient learning scheme. If we apply a sophisticated discrete
search, with prototypes restricted to be selected from the data objects, a median-like
optimization scheme is obtained. Further, because the new prototypes Θnew have not
to be maximizing the function L in each iteration step, it is not a precise maximization
step and, therefore, we denote it as a generalized M-step (gM-step) and the overall
procedure a generalized EM-optimization (gEM). Because of the lack of space, we
refer to [19] for convergence details. We refer to our approach as median ROC-LVQ
(mROC-LVQ).

4 Numerical Experiments
We tested the mROC-LVQ for several data sets. The results are compared with those
obtained by median-LVQ (m-LVQ), which is described in [14]. The following datasets
are investigated:
Insect This dataset is taken from [20]. There are 69 high-dimensional sequences of
joint angles for stick insect locomotions. The whole-body kinematics was captured for
two walking conditions: a straight walk (class A, 36% of the data), and a climbing
task (class B, 64% of the data). The dissimilarity matrix was calculated according to a
dynamic time warping procedure. For details we refer to [20].
Aural Sonar The data set is obtained from [21]. It consists of 100 sonar signals out
of two classes (target of interest/clutter) with 50 samples for each. The dissimilarities
between the signals were determined by an ad hoc classification of humans.
Voting This data set is also from [21]. The dataset contains 435 samples distinguished
into 2 classes, representing categorical data records. Each record represents the votes
of an U.S. House of Representatives Congressmen to 16 different problems. Thus, each
data point includes 16 features, the voting results (yes or no). The goal is to classify
democrats and republicans. The class ratio within the dataset is 267 to 168. The samples
are compared based on the value difference metric.
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Wisconsin Breast Cancer (WDBC) The dataset contains vectors computed from digi-
tized images of fine needle aspirates (FNA) of breast masses [22]. The vectors describe
characteristics of the cell nuclei present in the image. The data vectors are compared
by the Euclidean distance. Overall, there are 212 malignant samples and 357 benign.
PIMA indians diabetes The UCI PIMA dataset collects records of 268 diabetic and
500 non-diabetic humans [22]. The record attributes are : 1. Number of times pregnant
2. Plasma glucose concentration after 2 hours in an oral glucose tolerance test 3. Di-
astolic blood pressure (mm Hg) 4. Triceps skin fold thickness (mm) 5. 2-hour serum
insulin (mu U/ml) 6. Body mass index (weight in kg/(height in m)2) 7. Diabetes pedi-
gree function 8. Age (years). The dissimilarity between the data records is estimated
by the Euclidean distance.
For each of the above datasets Π the following testing scenario was applied. The dataset
was 100 times partitioned randomly into three parts of equal size. For each partition
Πk the obtained splits πk,i, i = 1 . . . 3, have itself the same class distribution as the
whole dataset. A simulation run for a partition Πk takes the three splits as training
set, test set and validation set, respectively. Thus we get 6 possible combinations. For
each combination several classifier runs with varying smoothing parameter σ for fσ
are trained and tested by the respective sets. The best classifier according to test set is
chosen and validated using the validation set. The performance for the validation set
yields the result for the considered configuration. In summary, we obtain 600 results
for a selected dataset Π, the average of which gives the final performance µalg (Π) for
the dataset Π and classifier alg. The performances are compared by the Welch-test
with the zero-hypothesis that µmROC−LV Q (Π) ≤ µm−LV Q (Π) with error probability
α = 0.01. All simulations use only one prototype per class. The simulation results are
collected in Tab.2.

dataset Π µm−LV Q (Π) µmROC−LV Q (Π) significance
Insect 0.919 (0.0555) 0.926 (0.0520) ∗
Pima 0.758 (0.0382) 0.751 (0.0445) −

WDBC 0.964 (0.0100) 0.965 (0.0096) ∗
Aural Sonar 0.881 (0.0633) 0.895 (0.0558) ∗

Voting 0.978 (0.0133) 0.986 (0.0086) ∗
Table 2: Averaged validation accuracies µ and variances for mROC-LVQ compared to m-LVQ
together with significance level of the difference according to the Welch-test statistics with error
probability α = 0.01 (’∗’ - significant, ’−’ - non-significant).

We observe that direct optimization of the area AROC by mROC-LVQ outperforms m-
LVQ in most cases, as expected. The only exception is the PIMA-dataset. However,
this loss is not significant according to accompanied Welsh-test statistics.

5 Conclusion
In the present paper we developed a median variant of learning vector quantization
to optimize the area under the curve of the receiver-operating-characteristics in clas-
sification tasks for dissimilarity data. The approach is a probabilistic model based on
the LVQ-prototype principle. The optimization procedure follows a generalized EM-
scheme adopted from median-LVQ. However, beside mathematical details, the most
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important difference is the use of ordered data pairs and the ordering functions mo-
tivated by the probabilistic interpretation of the area under the ROC-curve. The paper
outlines the mathematical justification. Further, several exemplary applications on well-
known data sets verify the expected progress.
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