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Abstract. This paper deals with the problem of learning unknown
edges with attributes in a partially-given multigraph. The method is an
extension of Maximum Margin Multi-Valued Regression (M3VM) to the
case where those edges are characterized by different attributes. It is
applied on a large-scale problem where an agent tries to learn unknown
object-object relations by exploiting known such relations. The method
can handle not only binary relations but also complex, structured relations
such as text, images, collections of labels, categories, etc., which can be
represented by kernels. We compare the performance with a specialized,
state-of-the-art matrix completion method.

1 Introduction

Learning object-object relations is a difficult problem with sparse, noisy, cor-
rupted and incomplete information. One way of representing how objects can
relate to each other is modeling them by a graph where relations are represented
by edges where the vertices play the role of objects. Learning relations is formu-
lated as the problem of predicting edges. Network representations are already
used in many scientific fields, e.g. in biology, information technology, or in social
sciences [1].

Discovering relations between objects in a large database requires large num-
bers of experiments, and it is a computationally expensive procedure. Another
difficulty is that the data sources can be incomplete, biased or noisy. The ap-
proach to learn sparse, incomplete relations used in this paper is an extended
version of Maximum Margin Multi-Valued Regression (M3VM) [2, 3] which is a
kernel-based learning framework. This method is at the core of a recommender
system proposed by Ghazanfar et al. [2] and has shown state-of-the-art perfor-
mance in various real-world scenarios, including sparse, skewed and imbalanced
datasets. Szedmak et al. [3] applied a version of the same method in learning
affordances where the effect of an action on a pair of objects was predicted.
Those effects are represented by multi-class labels. Here we extend M3VM to
the class of learning problems where item-item relations might be given by a set
of different categorical labels. In a graph representation items can be interpreted
as vertices, and multiple relations by multiple edges between the vertices.

∗The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3,
Information and Communication Technologies) under grant agreement no. 610532, Squirrel
and no. 270273, Xperience.
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The learning scenario is a toy clean-up task in a room of kids, where an
agent needs to plan how to transform a messy child’s room into a tidy one by
moving objects to their storage locations and creating order. This scenario raises
a number of challenges such as learning spatial relations between objects in the
room. An agent can integrate this knowledge into the planning process and
use it to refine the world model. Large numbers of objects and their potential
interactions in this scenario make this task a large-scale problem. Estimating the
missing relations based on those already known, and discovering the underlying
structure in a graph where vertices represent objects in the room, can accelerate
planning procedures. Learning missing edges in a graph based on those observed
earlier can be interpreted as a generalization of semi-supervised learning. M3VM
seeks similar edges among the vertices and predicts the missing edges. In this
way properties of the existing subset of knowledge are propagated over the whole
graph, similarly to models based on random graphs [4, 5].

2 Problem Description

The task of reordering a room involves placing objects at target positions where
several cases can occur. For example, a teddy bear can be in or on a box but
also on a bed (see the small example in Fig. 1). Relations can also be bidirec-
tional, e.g. box A can be on box B and box B can be on box A. Thus all possible
relations have to be observed between the objects. In this paper four relations
were considered: in, on, below and next to. Hence, the number of attributes
describing edges is four, and each can take a value from the set {1,−1, 0} denot-
ing direct, reverse and no connection respectively. We assume that relations are
partially known in the agent’s database, and the problem is to predict the miss-
ing relations. The agent can exploit this knowledge, and based on predictions
and on prior knowledge complex relations can be formed, e.g. the teddy bear is
in box A and box A is below the bed, and it is next to box B. The nature of
this problem implies that missing values do not follow independent and identical
distributions, which makes this application interesting.
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Fig. 1: Small example: (left) Dataset representation; (right) Graph representa-
tion
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3 Description of the relational learner

Learning a relation can be realized via learning a function f : B×U → Z, where
B and U are two sets whose elements are connected by that relation, and the
elements of the set Z express the value of the similarity measure between the
elements of pairs from the Cartesian product B × U .

The function f is indirectly and partially given by a subset D of all pairs of
B×U , and the task is to reproduce the function f from the available data of D.
Since the elements of sets B, U and Z might be given by symbolic objects, e.g.
strings or labels, we need to represent them in spaces where their similarities can
be measured. To this end we assume that for each of those three sets there is a
corresponding function φB , φU and φZ , respectively, which maps those it into a
Hilbert space HB , HU and HZ , respectively. Thus, the inner product between
pairs of the elements of B, U and Z can be computed within those sets. Those
functions are also known as feature representations of their domain.

The set Z might be equal to {0, 1} and describe a simple relation, a multi-
valued mapping, between the elements of B and U . But it could consist of real
numbers, expressing e.g. the joint probability of element pairs. It can contain
labels of categories [3] or correspond to a range of ranks [2].

The learning problem is given by a set of sample items consisting of three
elements (b, u, zbu) where (b, u) ∈ D. The task is to reconstruct the function f
on the full domain B ×U . In our problem B = U and contains the objects to be
connected, and Z contains values taken from {−1, 0,+1} for each of the object
relations below, in, next to, and on.

Since the function f is unknown we need to create a model to describe it.
That model has to deal with the complexity, the inhomogeneity of the relation-
ship arising from a mixture of the non-identical and non-independent distribu-
tions used to generate the data. For this purpose we apply a piece-wise linear
function composed of several linear learners on feature spaces HB , HU and HZ .
To each of the elements of B we assign a learner Fb(b, u, zbu) such that

Fb(b, u, zbu|Wb) = 〈φZ(zbu),WbφU (u)〉HZ
, (1)

where Wb is a linear operator which maps HU to HZ . The inner product here
has greater value if the correlation between the vectors WφU (u) and φZ(zbu)
describing the relationship is higher.

To write down the entire optimization problem realizing the learning task we
need some additional notation. Let the projections of D into U and B be given
by Db = {u|u ∈ U , (b, u) ∈ D} and Du = {b|b ∈ B, (b, u) ∈ D}.

To achieve that the learners will cooperate with each other we define a hinge
loss function for all b ∈ B to measure the prediction error, namely

Lb(b, u, zbu) =

{
0 if Fb(b, u, zbu|Wb) ≥ 1,
maxu(1− Fb(b, u, zbu|Wb)) otherwise,

∀u ∈ Db. (2)

Now for a fixed u ∈ U all learners {Fb|b ∈ Du} acting on a sample instance
(b, u, zbu) we prescribe that the corresponding loss functions have to be bounded
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by only one slack variable ξu in the optimization problem, and the value of that
slack is minimized. As a consequence we have that ξu can have the minimum
value if all learners sharing it yield smaller error than ξu. Thus their loss is
uniformly minimized on the common instances, and hence they cannot vary
independently.

The optimization problem expressing the ideas introduced above is stated as

min
1

2
‖W‖2b + C

∑

u∈U
ξu

with respect to Wb ∈ (HZ ⊗HU )
∗, ξ ∈ R

card(U),
subject to 〈φZ(zbu),WbφU (u)〉 ≥ 1− ξu, b ∈ B, u ∈ Db,

ξu ≥ 0, u ∈ U ,

(3)

where ∗ denotes the space of the linear operators on the given space. Note
that the roles of B and U can be swapped. After solving the joint optimization
problem we have for all b ∈ B

Wb =
∑

u∈Db

αbu(φZ(zbu)⊗ φU (u)), (4)

where (αbu) are the optimal Lagrangian multipliers. The prediction to a given

pair (b̂, û) can be derived by

z∗bu = max
b̂û∈D

φZ(zb̂û)Wb̂φU (û) = max
b̂û∈D

φZ(zb̂û)
∑

u∈Db̂

αb̂u(φZ(zb̂u)⊗ φU (u))φU (û)

= max
(b̂û)∈D

∑

u∈Db̂

αb̂u 〈φZ(zb̂û), φZ(zb̂u)〉︸ ︷︷ ︸
K(zb̂û,zb̂u)

〈φU (u), φU (û)〉︸ ︷︷ ︸
K(u,û)

,

where K(zb̂û, zb̂u) and K(u, û) are kernel matrices built on the inner product
between the corresponding elements.

4 Experimental Results

The presented method was tested on a dataset created from the Princeton Shape
Benchmark database [6]. Prior edges in the graph were made based on labels
created by hand for the 761 items from the database.1 Four types of relations
were considered as described in Section 2. This implies a possible number of
connections in the network of 2316484, which makes this a large-scale problem.
Moreover, this task requires the handling of a large proportion of missing data
(see Table 1).

The problem of predicting edges is equivalent to the completion of the ad-
jacency matrix of the graph. The method is compared with the Augmented
Lagrange Multiplier Method (ALM technique) [7, 8] designed to recover cor-
rupted low-rank matrices. Table 1 shows that our general-purpose approach is
competitive with this state-of-art, specialized matrix completion method.

1The dataset is available on request.
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In the learning procedure, first the base kernels are computed from the cor-
responding features. The kernels are defined by the following rules: K(zbu, zbu′)
is equal to the number of shared attributes between the multiple edges bu and
bu′, and K(u, u′) =

∑
b K(zbu, zbu′) where the sum includes all terms that have

at least one edge in common between bu and bu′. The penalty factor C of (3)
is set to 1, and the kernel K(zbu, zbu′) is Gaussian with parameter 0.5 for all
datasets.

Dataset ALM M3VM
relations known binary triplets binary triplets
below 13.3 98.79(10.6) 99.84( 6.6) 99.96( 4.1) 99.92( 3.9)
in 15.2 99.83(16.1) 95.83(15.2) 98.40( 4.5) 98.21( 5.1)
next to 44.0 91.37(24.4) 91.34(23.4) 97.64( 7.4) 97.52( 7.9)
on 15.1 99.89(14.8) 99.99( 0.3) 99.35( 4.6) 99.49( 4.3)
all four 22.2 95.34(30.9) 95.31(29.5) 97.7(32.8) 98.5(34.8)

Table 1: Number of known relations in %. Accuracies in % (training time in
seconds) of the predictions on the four test sets. The binary case represents the
existence of edges in undirected graphs (−1, 1), and triplets in directed graphs
(−1, 0, +1).

A 5-fold cross-validation procedure is applied on the known data while predic-
tion is done on the whole dataset. The parameter corresponding to each kernel
is found by cross validation restricted to the training data. Error is measured
by root-mean-square error (RMSE), and the training time in seconds. For the
comparison of computational power needed for both methods, additional testing
was done on large-scale datasets (see Table 2). The datasets2 used in these ex-
periments consist of annotated images given by binary labels expressing that the
image has a certain property, e.g. it contains a building or a tree. We consider
two images as similar if they share common labels. The number of those labels
measures the similarity between each pair of the images.

”Corel5k” (3.97M connections) ”Espgame” (83.04M connections)
ALM M3VM ALM M3VM

0.3921 (270.2) 0.3338 (25.7) 0.4676 (4973.6) 0.4603 (429.5)

Table 2: Accuracies in % (training time in second) of the predictions on addi-
tional datasets for comparing computational power. The number of connections
corresponds to those pairs of images which share at least one label, and it is
given in millions (M).

The Singular Vale Thresholding (SVT) [9] and the TenAls algorithm [10]
were also tested on the presented problem. However, these methods diverge on
the dataset used since they make the strong assumption of Gaussianity about
the distribution of missing values, unlike M3VM.

2The datasets can be found at http://lear.inrialpes.fr/people/guillaumin/data.php.
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5 Conclusion

In this paper we have shown how M3VM can be applied to learn unknown multi-
ple edges in graphs. The case study is a room reordering task, where we predicted
possible missing relations between the objects. The presented method M3VM is
capable of predicting edges with multiple attributes via kernels. Predicted rela-
tions between items can guide the agent in new exploration. The same principle
can be used also for making and/or consolidating assumptions on item features
in a knowledge database which can be used in different scenarios, e.g., the pre-
sented scenario of reordering the room. The accuracy of the testing results gives
confidence to the agent in learning relations and can be used in exploration
tasks. As presented, this method can be applied to problems concerning cate-
gorical values as well as tensors. Thus it can easily be extended to problems of
learning edges of protein interactions, or to recommending connections within
social networks based only on already-existing links.
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