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Abstract. Probabilistic kernel classifiers are effective approaches to solve classi-
fication problems but only few of them can be applied to indefinite kernels as typ-
ically observed in life science problems and are often limited to rather small scale
problems. We provide a novel batch formulation of the Probabilistic Classification
Vector Machine for large scale metric and non-metric data.

1 Introduction

The Probabilistic Classification Vector Machine (PCVM) [2, 3] is a sparse probabilistic
kernel classifier pruning unused basis functions during training and a full probabilistic
classifiers which can be used for arbitrary positive definite and indefinite symmetric
kernel matrices. Here we propose a runtime and memory efficient formulation with lin-
ear complexity using the Nyström matrix approximation [11], which is exact if the rank
of the matrix equals the number of independent landmarks points. We also consider for
the first time PCVM with indefinite kernel matrices which are common e.g. in the life
science. First we review PCVM, then present Ny-PCVM, ensuring linear memory and
runtime complexity at good generalization ability, shown on various data sets.

2 Probabilistic Classification Vector Learning for large scale

PCVM uses a kernel regression model
∑N
i=1 wiφi,θ(x) + b with a link function, with

wi being the weights of the basis functions φi,θ(x) and b as a bias term. The basis
functions corresponds to kernels evaluated at data items. Consider binary classification
and a data set of input-target training pairs D = {xi, yi}Ni=1, where yi ∈ {−1,+1}.
The EM implementation of PCVM [3] uses the probit link function, i.e. Ψ(x) =∫ x
−∞N (t|0, 1)dt,where Ψ(x) is the cumulative distribution of the normal distribution

N (0, 1). We get:l(x; w, b) = Ψ
(∑N

i=1 wiφi,θ(x) + b
)

= Ψ (Φθ(x)w + b) Where
Φθ(x) is a vector of basis function evaluations for data item x.

In the PCVM formulation [2], a truncated Gaussian priorNt with support on [0,∞)
and mode at 0 is introduced for each weight wi and a zero-mean Gaussian prior is
adopted for the bias b. The priors are assumed to be mutually independent. p(w|α) =
N∏
i=1

p(wi|αi) =
N∏
i=1

Nt(wi|0, α−1
i ), p(b|β) = N (b|0, β−1), δ(·) = 1x>0(x).

p(wi|αi) =

{
2N (wi|0, α−1

i ) if yiwi > 0

0 otherwise
= 2N (wi|0, α−1

i ) · δ(yiwi).
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We follow the standard probabilistic formulation and assume that zθ(x) = Φθ(x)w + b
is corrupted by an additive random noise ε , where ε ∼ N (0, 1). According to the probit
link model, we have:

hθ(x) = Φθ(x)w + b+ ε ≥ 0, y = 1, hθ(x) = Φθ(x)w + b+ ε < 0, y = −1 (1)

and obtain: p(y = 1|x,w, b) = p(Φθ(x)w + b+ ε ≥ 0) = Ψ(Φθ(x)w + b). hθ(x) is
a latent variable because ε is an unobservable variable. We collect evaluations of hθ(x)
at training points in a vector Hθ(x) = (hθ(x1), . . . , hθ(xN))>. In the expectation
step the expected value H̄θ of Hθ with respect to the posterior distribution over the
latent variables is calculated (given old values wold, bold). In the maximization step the
parameters are updated through

wnew = M(MΦ>θ (x)Φθ(x)M + IN )
−1
M(Φ>θ (x)H̄θ − bΦ>θ (x)I) (2)

bnew = t(1 + tNt)−1t(I>H̄θ − I>Φθ(x)w) (3)

where IN is a N-dimensional identity matrix and I a all-ones vector, the diagonal ele-
ments in the diagonal matrix M are:

mi = (ᾱi)
−1/2 =

{√
2wi if yiwi ≥ 0

0 else
(4)

and the scalar t =
√

2|b|. For further details see [2].

2.1 Nyström approximation

The Nyström approximation for kernel methods (details in [11]) gives:

K̃ = KN,mK
−1
m,mKm,N . (5)

Therebym (columns/rows) of the original kernel matrix have been selected as so called
landmarks and K−1

m,m denotes the Moore-Penrose pseudoinverse of this landmark ma-
trix. The approximation is exact, if Km,m has the same rank as K.

2.2 PCVM for large scale proximity data

The PCVM parameters are optimized using the EM algorithm to prune the weight vec-
tor w during learning and hence the considered basis functions representing the model.
We will now show multiple modifications of PCVM to integrate the Nyström approxi-
mation and to ensure that the memory and runtime complexity remains linear at all time.
We refer to our method as Ny-PCVM. Initially the Ny-PCVM algorithm makes use of
the matrices K1 = KN,m and K2 = K−1

m,m · K>1 obtained from the original kernel
matrix using the Nyström landmark technique described above. Given a matrixX , we
denote by X̂ the matrix formed from X containing elements at indices that have not yet
been pruned out of the weight vector w. As an example, the matrices K̂1 = Kw 6=0,·

1 ,
K̂2 = K ·,w 6=0

2 hold only those columns/rows of K1 or K2 not yet pruned out from
the weight vector. We will use the same notation also for other variables. We denote
the set of indices of m randomly selected landmarks by [m]. Finally, in contrast to the
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original PCVM formulation [2], in our notation we explicitly use the data labels - for
example, instead of vector Φθ(x) we write Ξθ(x) ◦ y, where Ξθ(x) is the kernel vec-
tor of x without any label information, y is the label vector and ◦ is the element-wise
multiplication.

We now adapt multiple equations of the original PCVM to integrate the Nyström
approximated matrix. Beginning with the elements of vector (for a single training vector
i) zθ:

zi,θ = Ξθ(xi)(y ◦w) + b, (6)

we rewrite Eq.(6) in matrix notation for all training points:

ẑ = (((ŷ ◦ ŵ)>K̂1) ·K2)> + b (7)

and further obtain column vectors H̄θ and the reduced form ¯̂Hθ, by using only the non-
vanishing basis functions and the Nyström approximated matrices in Eq. (1). In the
maximization step of the original PCVM the w are updated as (see Eq. (2)):

wnew = M(MΦθ(x)>Φθ(x)M + IN )︸ ︷︷ ︸
Υ

−1
M(Φθ(x)>H̄θ − bΦθ(x)>I) (8)

To account for the now excluded labels we reformulate Equation (2) as:

wnew = M(M(Ξθ(x)>Ξθ(x)ŷ>ŷ)M + IN )︸ ︷︷ ︸
Υ

−1
M(ŷ>(Ξθ(x)>H̄θ) − bŷ>(Ξθ(x)>I))

The update equations of the weight vector include the calculation of a matrix in-
verse of Υ which was originally calculated using the Cholesky decomposition. To
keep our objective of small matrices we will instead calculate the pseudo-inverse of
this matrix using a Nyström approximation of Υ. It should be noted at this point that
the matrix Υ is psd by construction. We approximate Υ by selecting another set of
m∗ landmarks from the indices of the not yet pruned weights and calculate the matrix
Υ̃ = CNm∗W−1

m∗,m∗C>Nm∗ in analogy to Eq (5) with submatrices: 1

CNm∗ = EN [m] + ((K̂1 · (K2 · (K1 · K̂2·,[m∗]))(ŷ
>ŷ[m∗]))

◦
√

2ŵ) ◦
√

2ŵ>[m∗]

Wm∗,m∗ = C−1
m∗,·

Where ◦ indicates (in analogy to its previous meaning) that each row of the left matrix
is elementwise multiplied by the right vector and EN [m] is the matrix consisting of the
m landmark columns of the N ×N identity matrix. The terms

√
2ŵ and

√
2ŵ>[m∗] are

the entries of the diagonal matrix M as defined in Eq. (4) but now given in vector form.
These two matrices serve as the input of a Nyström approximation based pseudo-

inverse (as discussed in sub section 2.3) and we obtain matrices V ∈ RN×r, U ∈ Rr×N
and S ∈ Rr×r, where r ≤ m∗ is the rank of the pseudo inverse. Further we define two

1The number of landmarks m∗ is fixed to be 1% of |w| but not more then 500 landmarks. If the length
of w drops below 100 points we use the original PCVM formulations.
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vectors v1 = ¯̂Hθ

>
·K1 and v2 = I> ·K1. We obtain the approximated weight update

wnew = V · (S ·U> · (
√

2ŵ(ŷ(v1 · K̂2)>− b · ŷ(v2 · K̂2)>)))
√

2ŵ. The update of the
bias is originally done as

b = t(1 + tNt)−1t(I>H̄θ − I>Φθ(ŷŵ)) (9)

which is replaced to: b = t(1 + tNt)−1t(I> ¯̂Hθ − I>((((ŷŵ)>K̂1) ·K2)>)) Subse-
quently the entries in ŵ which are close to zero are pruned out and the matrices K̂1 and
K̂2 are modified accordingly.

2.3 Pseudo Inverse, SVD and EVD of a Nyström approximated matrix

The pseudo inverse of a Nyström approximated matrix can be calculated by a modified
singular value decomposition (SVD) with a rank limited by r∗ = min{r,m} where r
is the rank of the pseudo inverse and m the number of landmark points. The output
is given by the rank reduced left and right singular vectors and the reciprocal of the
singular values. The singular value decomposition based on a nyström approximated
similarity matrix K̃ = CNmW

−1
m,mC

>
Nm with m landmarks, calculates the left vectors

of K̃ as the eigenvectors of K̃K̃> and the right singular vectors of K̃ as the eigenvec-
tors of K̃>K̃. The non-zero singular values of K̃ are then found as the square roots of
the non-zero eigenvalues of both K̃>K̃ or K̃K̃>. Accordingly one only has to calcu-
late a new Nyström approximation of the matrix K̃K̃> using e.g. the same landmark
points as for the input matrix K̃. Subsequently an eigenvalue decomposition (EVD)
is calculated on the approximated matrix ζ = K̃K̃>.For a matrix approximated by
Eq. (5) it is possible to compute its exact eigenvalue decomposition in linear time. To
compute the eigenvectors and eigenvalues of an indefinite matrix we first compute its
squared form. Let K be a psd similarity matrix, for which we can write its decomposi-
tion as K̃ = KN,mK

−1
m,mKm,N = KN,mUΛ−1U>K>N,m = BB>, where we defined

B = KN,mUΛ−1/2 with U and Λ being the eigenvectors and eigenvalues of Km,m,
respectively. Further it follows for the squared K̃: K̃2 = BB>BB> = BV AV >B>,
where V and A are the eigenvectors and eigenvalues of B>B, respectively. The corre-
sponding eigenequation can be written as B>Bv = av. Multiplying with B from left
we get: BB>︸ ︷︷ ︸

K̃

(Bv)︸ ︷︷ ︸
u

= a (Bv)︸ ︷︷ ︸
u

. It is clear thatAmust be the matrix with the eigenvalues

of K̃. The matrix Bv is the matrix of the corresponding eigenvectors, which are or-
thogonal but not necessary orthonormal. The normalization can be computed from the
decomposition: K̃ = BV V >B> = BV A−1/2AA−1/2V >B> = CAC>, where we
defined C = BV A−1/2 as the matrix of orthonormal eigenvectors of K. The eigenval-
ues of K̂ can be obtained using A = C>K̂C.

3 Complexity analysis

The original PCVM update rules have costs of O(M3) and memory storage O(M2),
where M is the number of non-zero basis functions and M ≤ N calculating the kernel
matrix costs O(N2). Accordingly the runtime complexity PCVM is O(N2 + M3)
and the memory complexity is O(N2), which is reduced in the final model, due to
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the sparseness constraint. The Ny-PCVM involves the extra Nyström approximation
of the kernel matrix to obtain KN,m and K−1

m,m. If we have m landmarks, m � N ,
this gives costs of O(mN) for the first matrix and O(m3) for the second, due to the
matrix inversion. Further both matrices are multiplied within the optimization so we
get O(m2N). Similarly, the matrix inversion of the original PCVM with O(M3) is
reduced to O(m∗2M) + O(m∗3) due to the Nyström approximation of the matrix Υ.
Since we choose m∗ = min{max{1, N · 0.01}, 500}, the complexity of the inversion
of Υ is small. If we assume m∗ < m � N we get O(m2N) as the overall runtime
complexity. The memory complexity of Ny-PCVM is O(mN).

4 Experiments

We compare Ny-PCVM to PCVM on various N (0, 1) normalized larger datasets2,
The spam data (4601pts, two classes,57dims), satellite (6435pts, six classes,36dims),
usps(11000pts, 10 classes, 256dims)3 and the adult data (30162pts, two classes,14dims)
we use the ELM kernel [7] and for MNIST (70.000pts, ten classes,784dims)4 a polyno-
mial kernel (Details see [5]) all with 500 landmarks each. Adult, Spam and Satellite are
taken from the UCI database.We report mean, standard errors and runtimes as obtained
by a 10 fold crossvalidation. Considering the results in Table 1 and Table 2 we observe
that Ny-PCVM achieves similar accuracies compared to the other approaches while be-
ing substantially faster then PCVM and competitive to CVM. For adult and mnist the
runs took too long with PCVM. On can clearly see that Ny-PCVM scales linear in the
number of samples in contrast to the cubic complexity of PCVM Ny-PCVM is a mag-
nitude slower than CVM but can also be used for non-psd datasets. Non-vectorial data

Ny-PCVM PCVM CVM
spam 92.63 ± 1.0 92.63 ± 1.0 93.50 ± 1.0
satellite 83.53 ± 1.3 71.39 ± 2.3 89.26 ± 1.2
usps 90.43 ± 0.6 87.53 ± 1.1 96.21 ± 0.7
adult 79.25 ± 0.7 −− 80.90 ± 0.5
mnist 83.24 ± 0.7 −− 89.03 ± 0.7

Table 1: Accuracies - vectorial data

Ny-PCVM PCVM CVM
spam 5.69 ± 0.9 62.38 ± 2.0 0.28 ± 0.2
satellite 6.10 ± 1.0 64.37 ± 1.9 0.42 ± 0.2
usps 13.42 ± 1.5 153.40 ± 15.6 1.14 ± 0.1
adult 19.62 ± 1.1 −− 0.95 ± 0.1
mnist 53.23 ± 1.5 −− 2.4 ± 0.1

Table 2: Runtimes - vectorial data

given by means of indefinite kernels have not yet been considered for the PCVM but
are of wide interest [9]. In contrast to many standard kernel approaches, for PCVM, the
indefinite kernel matrices need not to be corrected by costly eigenvalue correction [4].
Further the PCVM provides direct access to probabilistic classification decisions. We
compare to the indefinite kernel fisher discriminant (iKFD) [10] 5.

The data sets are gesture (1500pts, 20 classes), Zongker (2000pts, 10 classes) and
Proteom (2604pts, 53 classes) all from [6]; Chromo (4200pt, 21 classes) from [8] and
Swiss (82525 pts, 46 classes) from [1], database 10/2010, reduced to prosite labeled
classes with at least 1000 entries (1000 randomly chosen landmarks). All data are
processed as indefinite kernels with 100 landmarks if not stated otherwise. For all ex-
periments we report mean and standard errors as obtained by a 10 fold crossvalidation.
The probabilistic outputs can be directly used to allow for a reject region but can also be
used to provide alternative classification decisions e.g. in a ranking framework In Table

2Comparison to standard benchmarks skipped due to lack of space - results e.g. to SVM are competitive.
3Taken from http://www.cs.nyu.edu/˜roweis/data.html
4http://yann.lecun.com/exdb/mnist/
5SVM for indefinite kernels use a proxy approach not scaling to larger data and are not probabilistic.
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Ny-PCVM PCVM iKFD
gesture 93.00 ± 1.8 95.80 ± 1.4 98.07 ± 0.7
zongker 91.35 ± 1.9 91.65 ± 2.3 96.95 ± 0.1
proteom 88.06 ± 2.3 88.56 ± 2.4 99.35 ± 0.8
chromo 93.10 ± 1.1 95.07 ± 1.0 97.29 ± 0.7
swiss 67.70 ± 4.4 – –

Table 3: Accuracies - indefinite kernels

Ny-PCVM PCVM iKFD
gesture 1.62 ± 0.2 16.72 ± 14.0 69.38 ± 7.5
zongker 2.00 ± 0.4 17.13 ± 13.6 74.22 ± 6.9
proteom 1.98 ± 0.4 5.33 ± 0.7 758.90 ± 28.4
chromo 3.00 ± 0.3 10.36 ± 6.4 1073.9 ± 26.2
swiss 29.37 ± 6.9 – –

Table 4: Runtimes - indefinite kernels

3 and Table 4 we show the results for different non-metric proximity datasets using Ny-
PCVM, PCVM and iKFD. We observe that the prediction accuracy of iKFD is better
compared to Ny-PCVM on the non-metric proximity data. The main reason for this
effect can be found if we consider the model complexity for iKFD basically all training
points are used in the model ≥ 97% whereas for Ny-PCVM only less than 0.3% are
kept. In practice it is often costly to calculate the non-metric proximity measures like
sequence alignments and accordingly sparse models are very desirable. Considering
the runtime Ny-PCVM is faster than PCVM by a magnitude and by 1-3 magnitudes
compared to iKFD in the training. For non-psd data Ny-PCVM is substantially better
in runtime and sparsity compared to the state of the art with good prediction accuracy.

5 Conclusions

We presented an alternative formulation of the PCVM employing the Nyström approxi-
mation. We found that Ny-PCVM is competitive in the prediction accuracy with PCVM
and alternative approaches, while taking substantially less memory and runtime. In this
work we also have shown how the Nyström approximation can be used to calculate an
eigenvalue decomposition, a singular value decomposition and the pseudo-inverse of a
Nyström approximation in an efficient way. The Ny-PCVM provides now an effective
way to obtain a probabilistic classification model for medium to large psd and non-
psd datasets, in batch mode with linear runtime and memory complexity. To our best
knowledge it is the only approach which scales to larger non-psd data. 6
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