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Abstract. Prototype-based classification, identifying representatives of
the data and suitable measures of dissimilarity, has been used successfully
for tasks where interpretability of the classification is key. In many practi-
cal problems, one object is represented by a collection of different subsets of
features, that might require different dissimilarity measures. In this paper
we present a technique for combining different dissimilarity measures into
a Learning Vector Quantization classification scheme for heterogeneous,
mixed data. To illustrate the method we apply it to diagnosing viral
crop disease in cassava plants from histograms (HSV) and shape features
(SIFT) extracted from cassava leaf images. Our results demonstrate the
feasibility of the method and increased performance compared to previous
approaches.

1 Introduction

Learning Vector Quantization (LVQ) is a family of prototype based, adap-
tive classification schemes, which has attracted considerable interest in a va-
riety of scientific fields. Arguably the most striking advantage of LVQ methods
over other classification schemes is their interpretability. Psychologically, class-
representative prototypes are also a typical form of cognitive organisation of real
world objects [1].

A key ingredient of an LVQ system is the dissimilarity between two object
representations. Most frequently, a single measure is used to quantify dissimi-
larity in the corresponding vector space. However, in many practical contexts,
an observation consists of several, separate sets of features which can be very
different in nature. As just one example, patient data in medicine may com-
prise image data, lab measurements, and gene expression data. The design of
appropriate, data driven analysis tools suitable for heterogeneous, mixed data
sets constitutes one of the main current challenges.

In this work, we suggest the use of adaptive combined distance measures to
handle heterogeneous data in an LVQ framework. An early attempt at tackling
this problem is presented in [2].
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2 Combining dissimilarity measures – mb-GLVQ

Our approach is inspired by the Generalized Matrix Learning Vector Quantiza-
tion (GMLVQ) approach [3] introduced by Schneider et al. We consider concate-
nated feature vectors V which consist of K sub-vectors, V = [v1,v2, . . . ,vK ],
where the vk are vectors in partial sub-spaces.

Let us denote the examples as Vν where ν is the example index. Similarly for
the prototypes, W = [w1,w2, . . . ,wK ] the wk represent the partial sub-spaces
of the vk. Prototypes are indexed with the superscript n, data labels are denoted
as σν ∈ {1, 2, . . . , C} and prototype labels as Sn ∈ {1, 2, . . . , C}.

We propose to use individual dissimilarity measures for the partial sub-spaces
of features dk (Vν) integrated into a quadratic form analogous to the GMLVQ
approach. A similar approach has previously been employed by [4]. The com-
bined distance measure DΛ is formalized as

DΛ (V,W) =

 d1 (v1,w1)
...

dK (vK ,wK)


>

Λ

 d1 (v1,w1)
...

dK (vK ,wK)

 = ~d (V,W)
>

Λ ~d (V,W) .

The matrix Λ takes into account the interplay of the different dissimilarity mea-
sures. In the special case with zero off-diagonal elements, the above reduces to a
linear combination of the squared individual dissimilarities. In general, DΛ will
be a pseudo-metric. For our approach, it need not satisfy the triangle inequal-
ity, only non-negativity of the measure is needed. This can be ensured when
substituting the parameter matrix Λ by Λ = Ω>Ω.

Adapting the prototypes W and the dissimilarity parameters Ω follows a
batch gradient descent over a cost function structurally similar to the one intro-
duced by Sato and Yamada for the Generalized-LVQ [5]:

Emb-GLVQ =

N∑
ν=1

L

(
D+

Λ (Vν)−D−Λ (Vν)

D+
Λ (Vν) + D−Λ (Vν)

)
with D+

Λ (Vν) representing the overall dissimilarity DΛ (Vν ,W+) to the near-
est prototype of the correct class W+ and D−Λ (Vν) representing the overall
distance to the nearest prototype of a different class W−. For simplicity in this
presentation, we restrict L (·) to its simplest form, i.e. L(x) = x.

According to the previous considerations the update rule for the prototype
position in the sub-space of index k? is given with respect to example feature
vector Vν as

∆w+
k? = −4 · εw ·

D−Λ (Vν)(
D+

Λ (Vν) +D−Λ (Vν)
)2 · K∑

k=1

λk?,kd
+
k (Vν) ·

∂d+
k? (Vν)

∂w+
k?

with λk?,k the (k?, k)th entry of Λ = Ω>Ω and d+
k (Vν) the individual dissimi-

larity in the kth sub-space to the sub-space prototype w+
k of the nearest correct
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prototype W+. For the nearest prototype of a different class, we yield

∆w−k? = 4 · εw ·
D+

Λ (Vν)(
D+

Λ (Vν) +D−Λ (Vν)
)2 · K∑

k=1

λk?kd
−
k (Vν) ·

∂d−k? (Vν)

∂w−k?
.

Obviously, this approach is only suitable for differentiable dissimilarity measures.
To also handle discrete dissimilarity measures or dissimilarity matrixes, a ker-
nelized approach is presented in [4] following the ideas of Relational Neural Gas
(RNG [6]) and Kernel Learning Vector Quantization (KLVQ [7]).

For global updates of the dissimilarity matrix Ω with respect to example
feature vector Vν we get the following update rule

∆Ωlm = −2·εΩ

c+d+
m (Vν) ·

Ω

d+1 (Vν)

...
d+K(Vν)



l

− c−d−m (Vν) ·

Ω

d−1 (Vν)

...
d−K(Vν)



l


with

c+ =
D−Λ (Vν)(

D+
Λ (Vν) +D−Λ (Vν)

)2 and c− =
D+

Λ (Vν)(
D+

Λ (Vν) +D−Λ (Vν)
)2 .

The matrix is normalized after each step to satisfy trace (Λ) = 1.
In the training phase, prototypes and matrix Ω are optimized simultane-

ously, based on the available example data. Step size of adaptation is influenced
by learning rates εw and εΩ in the update rules. For optimal adaptation the
prototypes require a stationary dissimilarity measure (see [8] for the theoretic
foundations), thus it has been suggested to perform the dissimilarity adaptation
using εΩ � εw.

In the initialization of the prototypes and the dissimilarity measure, appro-
priate domain knowledge can be included.

3 Problem definition and experimental set-up

3.1 Diagnosing viral crop disease

In our experiments we consider the task of diagnosing Cassava Mosaic Disease
(CMD) [9]. CMD manifests in crops as decolorization and deformation of the
leaves of the plant as shown in Figure 1. Our goal is to diagnose the disease using
leaf images as described in previous work on visual cassava disease diagnosis [10].
We extract four sets of features: three sets of color information as normalized
histograms (50 bins) of the observed values of Hue, Saturation, and Intensity
(HSV) and one set corresponding to local image gradient information, using
Scale Invariant Feature Transform (SIFT) descriptors [11] to represent shape
features.

Two datasets are considered which were acquired under different conditions:
For the lab-cassava dataset images were taken in a lab environment with con-
trolled lighting and uniform background. The field-cassava dataset, represents
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Fig. 1: Examples of healthy leaves (left), diseased leaves in-situ (middle left),
histograms of diseased and healthy leaves (middle right) and examples of SIFT
features extracted from a diseased crop image (right).

Data sub-space Dissimilarity measure Parameter setting

H, S and V histograms γ-divergence γ = 1.5
SIFT data (normalized) γ-divergence (CS) γ = 1.0

Table 1: Different dissimilarity measures for different data components

images taken in the field with typical background noise including other plants,
bare ground, and shadows.

3.2 Experimental set-up

The histograms of Hue, Saturation and Intensity (HSV) and the SIFT features
form heterogeneous features of the images. Different dissimilarity measures for
the different feature sets are selected based on Table 1. The choice of diver-
gences for the HSV histograms’ dissimilarities in the LVQ system is based on
previous work [10]. There we explored the advantages of using divergences as
dissimilarity measures of distributions or other positive measures as compared
to using standard Euclidean measures. The family of γ-divergences is partic-
ularly attractive because tuning the parameter γ → 0 results in the popular
Kullback-Leibler divergence and for γ = 1, we obtain the Cauchy-Schwarz (CS)
divergence. We combined the dissimilarity measures into one global measure as
outlined in Section 2.

For the HSV histograms, we select γ = 1.5, based on empirical observations
for a set of γs (0.5, 1.0, 1.5). The choice of γ = 1.0 for the SIFT dataset reflects
the unique property of the Cauchy-Schwarz divergence, which can be used for
non-normalized positive data as well. For these experiments, the matrix Λ was
initialized as the identity. The matrix resulting from the training process can
be interpreted as a measure for the weight of the dissimilarities in the data
sub-spaces for classification.

We performed 4-fold cross-validation repeated for 2 runs each through 100
epochs of the data. We consider a single prototype per class LVQ system. Using
more prototypes would have been computationally more expensive but would
also have enabled detecting multiple modes in the different classes. However it
was not expected that the data would contain multi-modal classes. Training the
system follows a batch-gradient descent optimization with a method to control
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the step size, presented in [12]. In each step of the procedure prototypes and
matrix Ω are updated simultaneously with subsequent normalization.

4 Results

Results in Table 2 are presented as Area Under Curve (AUC) for the test set
Receiver Operating Characteristics (ROC) curves [13]. We compare with first
results from previous experiments without combination of the distance measures
[10]. The next rows show performance of our method mb-GLVQ with combi-
nation of the HSV histograms (second row), and HSV and SIFT subsets (third
row).

Feature sets and method Lab-Cassava Field-Cassava
HSV without combination 0,86700 -
HSV in mb-GLVQ 0,92404 0,97640
HSV+Sift in mb-GLVQ 0,96284 0,97738

Table 2: AUC results for different constellations of the data components

We additionally analysed the matrix Λ at the end of training to identify
the role of different data sub-spaces for classification. For the lab-cassava HSV
dataset, Hue(H) and Intensity(V) histograms play a key role in classification.
This result is consistent with previous experiments [10]. When SIFT features
are added, we notice a shift in reliance of the classifier to the SIFT features.
This probably accounts for the 4 % increase in the AUC performance (92 % to
96 %) shown in Table 2. For the field-cassava HSV dataset, we observe a greater
reliance of classification on the Intensity(V) histogram. Adding SIFT features,
improves the performance only slightly, probably because obtaining shape and
interest point features with a noisy background is not effective. In both cases,
the representations of the off-diagonal elements give a similar intuition to the
plots of the diagonal of the matrix.

5 Conclusion

The novelty of our method is the integration of different dissimilarity measures
using a matrix in an approach similar to [3] in a global GLVQ update scheme.
Results from our experiments with cassava leaf data indicate the feasibility of
our method. Our method provides superior performance compared to previous
work using similar methods on the same datasets. The experiments indicate im-
provement in the performance when additional features are added to the example
representation.

In future we intend to extend the method to two different application scenar-
ios: (i) when different subsets of features represent the same physical entity and
(ii) when different dissimilarity measures are applied to the same data. We will
also investigate how local distance parameterizations inform the interpretability
of the results of the classifier.
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