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Abstract. In the context of vineyard soils characterization this paper ex-
plores and compare di�erent recent Non Linear Dimensionality Reduction
(NLDR) methods on a high-dimensional Visible and Near InfraRed Spec-
troscopy (VNIRS) dataset. NLDR methods are based on k-neighborhood
criterion and euclidean and fractional distances metrics are tested. Results
show that Multiscale Jensen-Shannon Embedding (Ms JSE) coupled with
euclidean distance outperform all over methods. Application on data is
performed at di�erent spatial localization and at di�erent depths of soil.

1 Introduction

Visible and Near InfraRed Spectroscopy (VNIRS) is an e�cient tool for the
quanti�cation and characterization of soil components. Generally VNIRS anal-
yses are focusing on some regions of the spectrum as in [8] while other studies
focus on the all spectral signature treated by linear Principal Component Analy-
sis (PCA) in order to identify biogenic structures [11]. Unfortunately, these high
dimensional (HD) datasets are di�cult to handle, as the information is often re-
dundant and highly correlated with one another. Moreover, this HD dataset can
su�er from the curse of dimensionality [3], like norm concentration and hubness.
Thus, to improve the characterization performance and/or HD data visualiza-
tion, it is well interesting to use NLDR techniques to transform HD data into
a meaningful representation of reduced dimensionality. Some studies have tried
to compare NLDR methods to linear methods, often for synthetic data such as
the swissroll, but less for HD natural data. The aim of this paper is to �nd
the best NLDR method applied to the dataset in order to characterize vineyard
soils. A double variability is analyzed: an interspeci�c due to di�erent sites,
and an intraspeci�c due to the samples. Thus, we will �rst perform a global
analysis, then an analysis depending on soil depth. This paper is organized as
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follows: Section 2 presents the VNIRS dataset sampling used on this context,
the fractional metrics and an NLDR methods overview with a comparison based
on a quality assessment. Section 3 presents and discusses experimental results.
Section 4 draws the conclusions.

2 Materials and methods

2.1 Presentation of the VNIRS dataset

VNIRS dataset comes from four representative vineyard places of Burgundy:
Aloxe Corton, Couchey, Maranges and Monthelie. Samples are extracted on sur-
face and at di�erent soil depths. For each sample (dried, screened and crushed),
three VNIRS acquisitions are performed with a FieldSpec 3 (ASD Inc.). Each
spectrum scans wavelengths between 350 and 2500 nm. Therefore the dataset
presents a dimensionality of 2151. For each places numerous samples were taken.
The gathered results are characterized by one of the four sites and the soil layer
that is associated with them. Finally, we obtain 13 drillings in Aloxe Corton, 14
in Couchey, 11 in Maranges and 8 in Monthelie.

2.2 Overview of di�erent methods of dimensional reduction

We select nine of DR methods based on their scale analysis, re�ecting the com-
promise based by NLDR methods between global structure and preservation of
neighborhood at a local scale, and their distance or similarity. We retained 7
NLDR methods completed with to 2 linear methods: the Classical Multidimen-

sional Scaling (CMDS) and the Non-metric Multidimensional Scaling (NMDS)
[6]. Non Linear Mapping (NLM): Sammon's mapping [6] tries to preserve the
neighborhood topology of data by minimizing di�erences in distances between
the HD space and the low-dimensional (LD) space by the Sammon's space func-
tion.Curvilinear Component Analysis (CCA) [6] tries to preserve pairwise dis-
tances, but gives priority to small distances by incorporating the divergence of
Bregman in its stress function [9]. Stochastic Neighbor Embedding (SNE) [2] is a
non-linear reduction method based on similarities between points, which converts
pairwise distances into probabilities that represent similarities, where the most
similar points have a higher probability, and then recalculates these probabilities
in the LD space and minimizes the Kullback-Leibler (KL) divergence between
two distributions. t-distributed Stochastic Neighbor Embedding (t-SNE)[10] is
similar to SNE, di�erence is in the calculation of the probability distributions.
The SNE uses a Gaussian distribution, while the t-SNE is based on a Student
distribution. Neighbor Retrieval Visualizer (NeRV)[12] is similar to the t-SNE.
The main di�erence is the minimization of two dual KL divergences, that are
related to precision and recall, instead of a single KL divergence. The opti-
mization of two functions, and not only one, allows a better optimization of the
divergence. Jensen-Shannon Embedding (JSE)[5] is based on the preservation
of the neighborhood. Unlike previous methods JSE uses the Jensen-Shannon
divergence instead of the KL divergence to measure the similarities between two
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probability distributions. Multiscale Jensen-Shannon Embedding (Ms. JSE)[4]
is an improvement of JSE which overcomes the problematic of the neighborhood
size by taking into account multiple sample sizes, thanks to a log scale.

2.3 Fractional distance transformation

Nearest neighbor research often relies on the use of the euclidean distance. Unfor-
tunately when data represent high dimensional features, the euclidean distances
seem to concentrate and all distances between pairs of data elements seem to be
very similar. Therefore, the pertinence of the euclidean distance has been ques-
tioned in di�erent works, and fractional distance has been proposed in order to
overcome the problem of concentration phenomenon or curse of dimensionality
such as in [1]. In order to test if fractional distance can improve NDLR result,
we test it on our VNIRS dataset.

2.4 Quality criterion used for an objective comparison

In order to compare the di�erent methods, we use the quality assessment cri-
terion [7]. An evaluation based on the performance of cost functions of NLDR
methods is irrelevant, due to the variability of criteria used in cost functions
(mean, variance, standard deviation...). Therefore, a k-neighborhood quality
function is de�ned and we compare it to an average random projection. Then
we compute the area under the curve (AUC) of representing the score which is
a scale-independent quality criterion for comparing methods:

AUC =
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with K: number of neighbors, N : number of points, v: vector of K nearest neighbors
of point i in HD space, n: vector of K nearest neighbors of pointi in LD space.

3 Results and discussion

3.1 Results on raw data and fractional distance

We �rst compared the NLDR methods on the raw VNIRS dataset with the quality
criterion (table 1). Ms. JSE seems the best method with 76.8% of improvement over
a random projection. The CMDS (64.1%) gives also good results but is less e�ective
according to the quality criterion. Even if CMDS is very successful at a global scale,
Ms. JSE is better due to good representation of both global and local scales. MS JSE
will be used in section 3.3 for soil characterization. The use of an other metric, like
fractional distances, can con�rm the choice of Ms. JSE as preferential NLDR method.
Some studies introduce fractional distances as an alternative of Euclidean distances to
analyze dataset. So this is a good basis to con�rm the previous comparison. Ms. JSE
is again the best method with an improvement of 73.9% over a random projection.
Unfortunaltely, the fractional distances give poorer results than Euclidean distances
with all methods. The only exception is with the t-SNE which loses only 0.1%.
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DR Methods Euclidean distances Fractional distances
CMDS 64.1 56.8
NMDS 67.1 62.7
NLM 67.7 63.8
CCA 72.8 67.5
SNE 70.7 66.6
t-SNE 65.4 65.3
NeRV 73.2 68.9
JSE 70.8 67.1

Ms. JSE 76.8 73.9

Table 1: Comparison of DR methods with RNX functions on the raw VNIRS
dataset

3.2 Resulting projection of the data with Ms. JSE

Following the choice of Ms. JSE as the best approach, we speci�cally project the
VNIRS data with this method (�gure 1). Remember that the Aloxe Corton boreholes
are numbered 1 to 13, those of Couchey from 14 to 27, those of Maranges from 28 to
38 and those of Monthelie from 39 to 46. The projection shows a data organization in
clusters. We can observe that each cluster represent sampling place (it may be noted
that boreholes of the same place are closed). Moreover, the analysis of the Maranges
place clearly shows two clusters, representing two di�erent types of soil on this site,
which con�rms the capability of Ms. JSE to discriminate di�erent clusters and so soils
characteristics.

3.3 Clustering on VNIRS dataset depending on depth

In order to recognize di�erent terroirs of Burgundy, we perfom a k-means algorithm
on the same depth data points. The sampling method is described in section 2.1. We
assumed that there were 5 clusters corresponding to terroirs. So we used the k-means
method with 5 clusters as the input argument. Each �gure has its own clusters at each
depth. Thus, we are able to �nely sign and visualize the composition of vineyard soils
layers for each depth (�gure 2).

3.4 Discussion

In this paper, we demonstrate the Ms. JSE e�ciency. But �gure 1 shows that Ms.
JSE has medium performances at a global scale. In fact, Ms. JSE is the best trade-o�
between local and global scale: we can tolerate medium performances at global scale
because local performances are very high. In some cases that involve considerating
global performances, CMDS, NMDS or NLM can therefore provide best results than
Ms. JSE. Thus, the superiority of Ms. JSE is proved only for our application case and
cannot be considered as a general statement.

4 Conclusion

This paper explores the comparison and application of di�erent NLDR methods on
a high-dimensional dataset in order to characterize vineyard soils by their spectral
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Figure 1: Results of Ms. JSE on VNIRS dataset (RNX : 85.3%)

Figure 2: Results on depth data with k-means clustering (K=5)
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signatures. We determine that Ms. JSE with Euclidean distances is the most suitable
method for our biological dataset, thanks to a quality criterion based on the k-nearest
neighbor algorithm. The global analysis shows di�erent types of vineyard soils. Finally
we try a clustering in an analysis by depth and highlight 5 clusters with the k-means
algorithm. Then the determination of the spectral signature of a vineyard soil permits
less analysis to determine soil types. As future work, we will compare spectral signature
and chemical composition of each soil type.
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