
Real-time activity recognition
via deep learning of motion features

Kishore Konda1, Pramod Chandrashekhariah2,
Roland Memisevic3 and Jochen Triesch1,2 ∗

1- Goethe University Frankfurt, Germany

2- Frankfurt Institute for Advanced Studies, Germany

3- University of Montreal, Canada

Abstract.

Activity recognition is a challenging computer vision problem with count-
less applications. Here we present a real time activity recognition system
using deep learning of local motion feature representations. Our approach
learns to directly extract energy based motion features from video blocks.
We implement the system on a distributed computing architecture and
evaluate its performance on the iCub humanoid robot. We demonstrate
real time performance using GPUs, paving the way for wide deployment
of activity recognition systems in real world scenarios.

1 Introduction

Activity recognition is of primary interest in various applications such as video
surveillance, medical care, human-computer interaction etc. [1, 2]. In the recent
past, there has been an increasing interest in activity analysis from areas such
as elderly care and health monitoring of patients. Traditionally, patients are
required to wear a variety of sensors to identify their daily live activities [3,
4]. Vision based recognition schemes come in handy in such applications as
they allow the use of passive, non-contact sensors. This, however, requires a
system that not only learns and recognizes the activities in new scenarios but also
provides real-time performance. In this work we develop a end-to-end learning
based activity recognition system that learns from a minimal data set for a
given scenario providing high speed and real-time recognition performance. We
integrate and demonstrate the system on a robotic platform.

Using local motion features for activity recognition is a popular approach
employed in many of the previous works [5, 6, 7, 8]. Approaches like [8] use
traditional handcrafted features like HOG3D, HOF etc., as local motion fea-
tures whereas so-called energy models [7, 6, 5] learn motion features from the
input data. In traditional energy models, motion, or the spatial transformation
between two frames of a sequence, is represented as the sum of squared quadra-
ture Fourier or Gabor coefficients across multiple frequencies and orientations
[5]. Summing over squared quadrature pairs also induces invariance to content,
allowing the model to represent pure motion. In [6] it has been shown that

∗This work was supported in part by the German Federal Ministry of Education and Re-
search (BMBF) in projects 01GQ084(0/1) (BFNT Frankfurt), by an NSERC Discovery grant
and by a Google faculty research award. JT was supported by the Quandt foundation.

427

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

learning the spatial transformations and invariance can be viewed as two inde-
pendent aspects of learning. Based on that view they introduced a single layered
autoencoder based model named synchrony autoencoder(SAE) for learning mo-
tion representations. In this work we use the SAE for learning motion features
exploiting its training efficiency. In the next section we briefly explain the SAE
model followed by details on the real time activity recognition system in later
sections.

2 Learning motion features

In [6] it is shown that the detection of a spatial transformation can be viewed
as the detection of synchrony between the image sequence and a sequence of
features undergoing the transformation. This is done in the SAE model by
allowing for multiplicative (gating) interactions between filter responses applied
to the frames in a video. The following is a brief description of the SAE model
for sequences.

Let ~X ∈ RN be the concatenation of T vectorized frames ~xt ∈ RM , t =
1, . . . , T . Let Wx ∈ RQ×N denote a matrix containing Q feature vectors ~W x

q ∈
RN stacked row-wise. Each feature is composed of individual frame features
~wx
qt ∈ RM each of which spans one frame ~xt from the input sequence. The filter

responses, or “factors”, are defined as ~FX = Wx ~X. A simple representation of
motion can then be defined as

Hq = σ((F x
q)2), (1)

Learning in an autoencoder is generally achieved by minimizing the sum of a
reconstruction cost and a regularization term, using gradient descent. In this
work we use contractive regularization [9]. The cost function for the SAE model
together with the regularization is given by

JC = ‖(~X − ~̂X)‖2 + λ‖Je(~X)‖2E , (2)

where ‖Je(X)‖2E denotes the Frobenius norm of the Jacobian of the hidden units
with respect to the inputs [9], which for σ defined as logistic sigmoid is given by

‖Je(~X)|2E =
∑
j

(Hj(1−Hj))
2(F x

j)2
∑
i

(W x
ij)

2. (3)

The hyper-parameter λ is set via a grid search. The SAE model is used as the
feature extraction module of the activity recognition pipeline explained in the
following section.

3 Activity pipeline

Our activity analysis pipeline is based on the bag-of-words approach used in
[5, 6]. The pipeline consists of a feature extraction module followed by K-means

428

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

Fig. 1: Block diagram of real time activity recognition system on iCub.

vector quantization and finally a χ2 kernel SVM for classification. The model
described in Section 2 is used for motion feature extraction. The model is trained
on PCA-whitened input patches of size 10×16×16 (time×space×space). The
total number of training samples is 200, 000. The size of the latent hidden layer
representation from the model is fixed at 300.

It has been observed that spatially combining local features learned from
smaller input patches leads to better representation than features learned on
larger patches [5, 10]. In this regard, for computing a local feature describing
a larger region of input video, sub blocks of the same size as the patch size are
cropped from ”super blocks” of size 14×20×20 [5, 6]. The sub blocks are cropped
with a stride of 4 on each axis giving 8 sub blocks per super block. The feature
responses of sub blocks are concatenated and dimensionally reduced using PCA
to form the local feature. On these local features a K-means layer with 3000
centers is learned with 500, 000 samples for training. This gives a dictionary
of 3000 words where each word can be thought of as a motion pattern. The
pipeline can be viewed as layer-wise trained deep neural network.

For inference the super-blocks are extracted densely from the input video with
a 50% overlap. The resulting local features, from convolution operation, from the
entire video are quantized using the learned K-means vocabulary resulting in a
3000 dimensional histogram or bag-of-words feature vector. The histograms from
the training videos are used for training the SVM classifier. During inference the
histogram computed for a given test sequence is classified into a activity label.

4 Real-time recognition system

In this section we describe the real-time implementation of the activity recog-
nition system. The overall architecture of the system is as shown in Figure
1. platform. The individual modules shown in Figure 1 are run on different
machines that are connected through an open-source platform called YARP (a
robotic platform). We use a C++ implementation that uses OpenCV (computer
vision library) and GPUs (Graphical Processing Units) for fast computations to
cater to the real-time performance. We explain in detail the individual modules
in the rest of this section.

Camera reader: This module handles the video stream from the cameras of
the iCub humanoid robot [11]. The camera reader receives a continuous stream
of frames from the cameras on the robot, bundles them into groups of 14 and
then sends them to the block processor module. There is an overlap of 7 frames
netween subsequent video blocks.

429

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

Block processor: This module implements the activity recognition pipeline
explained in Section 3 which computes a histogram or motion descriptor (output
of the K-means quantization step) given a video block. The input to the block
processor are video blocks of size 14 frames from the camera reader. The com-
puted histogram for each input video block is passed on to the classifier module.
Our implementation has the ability to parallelize block processing by running
multiple instances of block processor on multiple GPUs.

Classifier: The module handles the output histograms from the block pro-
cessor by maintaining a first-in-first-out buffer of size 10 in our case. For every
new incoming histogram the module updates the buffer and predicts an action
label by summing over histograms in the buffer i.e., over past 10 blocks (4 secs of
video) unlike the offline case that uses the entire sequence to predict. The label
information can be further used in detection and tracking of the user involved
by controlling the gaze of the humanoid robot (see dotted lines in Fig. 1). We
plan to do this as part of our future work.

4.1 Implementation details

Hardware configuration and speed General-purpose computing on GPUs
has gained popularity in recent years especially in the field of computer vision
for speeding up the algorithms that involve intense computations on images. We
use GPUs for the block processor module. Our current implementation ran on a
system with 2.6 GHz CPU, 12 GB RAM and GTX 480 NVIDIA GPU devices.
We observed that the time taken for processing one video block of 14 frames
varied from 350 to 450 milliseconds that corresponds to an overall processing
speed of 15 to 20 frames per second fps, considering overlap of 7 frames between
the video blocks. When using four GPUs the speed further increased to 42 fps
which higher than what is considered is as real time performance.

YARP: a robotic architecture: We develop the system on a distributed
architecture to share the load onto different machines. We modularize the algo-
rithm into different parts that are simultaneously run and coordinated through
YARP. YARP (Yet Another Robot Platform) is a robot software architecture
that can run a collection of programs on different machines and lets them com-
municate in a peer-to-peer way [12]. In our work we run the camera reader, block
processor, classifier and Display modules on different cores/machines.

iCub robot: iCub is an open-system robotic platform that is generally con-
sidered an interesting experimental platform for analyzing cognitive, visual and
sensorimotor behaviors. iCub is designed with physical dimensions resembling a
3 year old child. The head in particular has two dragon fly cameras with VGA
resolution that are mounted as eyes used for video capture in our system. The
eyes can produce images at resolution of 320× 240 at a rate of ∼ 20 fps .

5 Dataset and results

As mentioned in the previous section we recorded a dataset on iCub robotic
platform for parameter training and testing of our system. The dataset includes

430

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

(a) Boxing (b) Clapping (c) Door-open-close (d) Drinking

(e) Waving-double (f) Waving-single (g) Sit-Stand (h) Walking

Fig. 2: Example snapshots of different actions from the collected dataset.

Boxing clapping DOC drinking HWD HWS sitstand walking
Boxing 46.6/49.8 26.6/9.6 0./0.4 0./7.2 0./1.2 20./15.4 0./10.6 6.6/5.5

clapping 11.1/1.6 61.1/52.7 0./0. 5.5/20.8 0./1.11 5.5/10.8 16.6/8.3 0./4.4
DOC 0./0. 0./0. 100./91.4 0./8.5 0./0. 0./0. 0./0. 0./0.

drinking 0./0. 0./0. 0./2.7 100./95.8 0./0. 0./0.9 0./0. 0./0.5
HWD 0./0. 11.1/6.5 0./0. 0./0.3 50./75.6 22.2/17.5 16.6/0. 0./0.
HWS 0./0. 0./0. 0./0. 0./11.7 0./0. 80./88.2 20./0. 0./0.

sitstand 0./0. 0./0. 0./0. 11.9/47.8 0./0. 0./0. 88.1/52.1 0./0.
walking 0./0. 0./0. 0./0.4 0./6.2 0./0. 0./0. 0./0. 100./93.3

Table 1: Confusion matrix of classification experiments. Offline test/Realtime
test.

videos from 8 different people P0 to P7 performing 8 different actions. The ac-
tions are namely ”clapping”, ”door open close”(DOC), ”drinking”, ”hand waving
double”(HWD), ”hand waving single”(HWS), ”sit stand”, ”walking” and ”box-
ing”. These actions are chosen as they are a subset of most observed human
behaviors in an indoor workplace environment. Example snapshots of different
actions are shown in Figure 2.

A total of 574 videos are collected and are divided into a training set of
355 clips from persons P1, P2, P3, P5, P7 and a testing set of 219 clips from
P0, P4, P6. Each person performed an action multiple times with two different
types of clothing (jacket on and jacket off). Since it is very likely that a person
performs an action similarly in multiple tries, the dataset is split into training
and testing set based on person rather than choosing random subsets of the total
set. The classification accuracy of the activity pipeline (Section 3) on the testing
set is 85.39%. The confusion matrix of the classification experiment is shown in
Table 1.

In order to validate the real time performance of the system, apart from
demonstrating it live on the iCub, we also run the system on longer test videos
collected from users P0, P4, P6 to quantify the results. The classifier module of
the system is set to predict for every new incoming video block which implies a

431

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

new prediction at an interval of seven frames (due to overlap). The classification
performance of the real time system is 74.91 and the corresponding confusion
matrix is reported in Table 1. The deviation from the offline performance on
the testing set is mainly due to inability of the current system to deal with user
activities other than the ones system is trained on.

6 Conclusion

The real-time system presented in this work achieves high processing speeds and
competitive performance by utilizing a very limited set of data samples. The
learned local motion features used by the system are well generalized there by
no additional parameter training (except the classifier) is necessary to be able to
recognize new sets of actions. The parallel architecture and utilization of GPUs
give the system the ability to achieve higher processing speeds when required.
In future we plan to utilize action class information for better detection and
tracking of the user via gaze control of the humanoid robot.

References

[1] Ronald Poppe. A survey on vision-based human action recognition. Image and vision
computing, 28(6):976–990, 2010.

[2] Pavan Turaga, Rama Chellappa, Venkatramana S Subrahmanian, and Octavian Udrea.
Machine recognition of human activities: A survey. Circuits and Systems for Video
Technology, IEEE Transactions on, 18(11):1473–1488, 2008.

[3] Tam Huynh, Ulf Blanke, and Bernt Schiele. Scalable recognition of daily activities with
wearable sensors. In Location-and context-awareness, pages 50–67. Springer, 2007.

[4] Seon-Woo Lee and Kenji Mase. Activity and location recognition using wearable sensors.
IEEE pervasive computing, 1(3):24–32, 2002.

[5] Q.V. Le, W.Y. Zou, S.Y. Yeung, and A.Y. Ng. Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis. In CVPR,
2011.

[6] Kishore Reddy Konda, Roland Memisevic, and Vincent Michalski. Learning to encode
motion using spatio-temporal synchrony. In Proceedings of ICLR, April 2014.

[7] Graham W. Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional
learning of spatio-temporal features. In Proceedings of the 11th European conference on
Computer vision: Part VI, ECCV’10, 2010.

[8] Heng Wang, Muhammad Muneeb Ullah, Alexander Kläser, Ivan Laptev, and Cordelia
Schmid. Evaluation of local spatio-temporal features for action recognition. In University
of Central Florida, U.S.A, 2009.

[9] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contrac-
tive Auto-Encoders: Explicit Invariance During Feature Extraction. In ICML, 2011.

[10] Adam Coates, Honglak Lee, and A. Y. Ng. An analysis of single-layer networks in unsu-
pervised feature learning. In Artificial Intelligence and Statistics, 2011.

[11] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernon, Luciano
Fadiga, Claes Von Hofsten, Kerstin Rosander, Manuel Lopes, José Santos-Victor, et al.
The icub humanoid robot: An open-systems platform for research in cognitive develop-
ment. Neural Networks, 23(8):1125–1134, 2010.

[12] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. Yarp: yet another robot platform.
International Journal on Advanced Robotics Systems, 3(1):43–48, 2006.

432

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

	papers1-10
	ESANN2015-68_2
	ESANN2015-88_3
	ESANN2015-35_2
	ESANN2015-26_3
	ESANN2015-100_3
	ESANN2015-73_4
	ESANN2015-15_9
	ESANN2015-27_4
	ESANN2015-65_12
	ESANN2015-33_6

	papers11-20
	ESANN2015-118_2
	ESANN2015-31_3
	ESANN2015-39_3
	ESANN2015-54_5
	ESANN2015-56_3
	ESANN2015-91_4
	ESANN2015-12_3
	ESANN2015-77_3
	ESANN2015-107_2
	ESANN2015-81_2

	papers21-30
	ESANN2015-135_2
	ESANN2015-125_3
	ESANN2015-90_4
	ESANN2015-23_5
	ESANN2015-126_2
	ESANN2015-29_2
	ESANN2015-67_2
	ESANN2015-2_2
	ESANN2015-13_2
	ESANN2015-52_8

	papers31-40
	ESANN2015-104_3
	ESANN2015-83_2
	ESANN2015-114_4
	ESANN2015-14_2
	ESANN2015-130_2
	ESANN2015-106_2
	ESANN2015-87_3
	ESANN2015-132_2
	ESANN2015-109_2
	ESANN2015-99_2

	papers41-50
	ESANN2015-131_4
	ESANN2015-50_2
	ESANN2015-95_2
	ESANN2015-10_3
	ESANN2015-41_2
	ESANN2015-48_2
	ESANN2015-102_4
	ESANN2015-18_1
	ESANN2015-43_3
	ESANN2015-49_3

	papers51-60
	ESANN2015-86_3
	ESANN2015-22_2
	ESANN2015-113_3
	ESANN2015-24_5
	ESANN2015-32_2
	ESANN2015-80_2
	ESANN2015-84_2
	ESANN2015-120_2
	ESANN2015-40_2
	ESANN2015-61_5

	papers61-70
	ESANN2015-46_4
	ESANN2015-5_4
	ESANN2015-21_3
	ESANN2015-112_2
	ESANN2015-82_9
	ESANN2015-85_3
	1 Introduction
	2 Data analytics
	2.1 Measurement data analyses (Time series)
	2.2 Observation data analysis (OS labels)

	3 Selection of classifiers for the best performance
	4 Conclusions

	ESANN2015-79_3
	ESANN2015-66_10
	ESANN2015-76_4
	ESANN2015-115_2

	papers71-80
	ESANN2015-124_3
	ESANN2015-116_2
	ESANN2015-122_4
	ESANN2015-89_4
	ESANN2015-101_10
	ESANN2015-136_4
	ESANN2015-128_3
	ESANN2015-127_2
	ESANN2015-16_1
	ESANN2015-37_6

	papers81-90
	ESANN2015-97_2
	ESANN2015-134_5
	ESANN2015-74_2
	ESANN2015-75_3
	ESANN2015-137_4
	ESANN2015-28_4
	ESANN2015-64_2
	ESANN2015-108_1
	ESANN2015-58_3
	ESANN2015-7_4

	papers91-96
	ESANN2015-111_4
	ESANN2015-45_2
	ESANN2015-34_2
	ESANN2015-110_2
	ESANN2015-59_4
	ESANN2015-69_7

	proceedings2015front.pdf
	pages i-vi
	pages vii-viii
	page ix
	pages x-xii

