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Abstract. In this work, three carbonation depth predicting models using decision 

tree approach are developed. Carbonation, in urban areas is often a reason for 

reinforcement steel corrosion that causes premature degradation, loss of 

serviceability and safety of reinforced concrete structures. The adopted decision 

trees are regression tree, bagged ensemble and reduced bagged ensemble 

regression tree. The evaluation of the predictions performance of the developed 

models reveals that all the three models perform reasonably well. Among them, 

reduced bagged ensemble regression tree showed the highest prediction and 

generalization capability.   

1 Introduction 

Corrosion of reinforcement steel in concrete induced by carbonation is the foremost 

cause of premature degradation, loss of serviceability and safety of reinforced 

concrete structures [1, 2]. Carbonation of concrete is a natural physicochemical 

process caused by the penetration of carbon dioxide from the surrounding 

environment into  the  concrete  through  pores  in  the matrix where the carbon 

dioxide  reacts  with  hydrated  cement. Calcium hydroxide (Ca(OH)2)  in  contact  

with  carbon  dioxide  (CO2) forms  calcium  carbonate  (CaCO3).  This chemical 

reaction reduces the alkalinity of the pore fluid from pH value around 13 to pH value 

of below 9. Consequently, the passive oxide layer steel reinforcement is destroyed 

and eventually corrosion of the steel bars will be initiated [2, 3]. 

 Concrete carbonation depth at a given time in steady state conditions can 

reasonably be estimated using Eq. (1) for usual life-time of concrete structures. This 

equation is based on Fick’s second law of diffusion and it is well known [2]. 

x = C√t   (1) 

where, x is the depth of carbonation at time t [mm] , C is coefficient of carbonation 

[mm/d
0.5

], and t is the duration of carbonation [d].  

 Coefficient of carbonation is a decisive factor in determining carbonation depth. 

It is analyzed either by an accelerated carbonation test or by measuring the 

development of the carbonation depth from an existing concrete structure. Since 

carbonation is a slow process, it is usually investigated by performing accelerated test 

with a higher CO2 concentration in a controlled environment at the age of 28 days [4]. 

Then, the measured carbonation depth is used to calculate the equivalent carbonation 

coefficient using Eq. (1). Carbonation coefficient is mainly controlled by diffusion of 

CO2 into the concrete pore system. CO2 diffusion through concrete depends on several 

factors such as CO2 concentration, environmental condition, and concrete 

characteristics. Therefore, carbonation coefficient may significantly vary from one 
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concrete structure to another depending on environment and microstructural 

parameters which are linked with concrete composition and type of materials used.  

 Developing analytical carbonation depth prediction model is a challenging task 

since it is a function of many parameters that are complex to describe mathematically. 

Hence, building a model that can learn from readily available real data using a 

machine learning algorithms is a better alternative. Even though this approach is 

becoming a common practice in various engineering fields, its application in concrete 

durability is yet limited. Among several machine learning techniques, only artificial 

neural network is widely used in this research area, for instance, chloride penetration 

in concrete [5] and hygrothermal forecasting in thick-walled concrete [6].  

 This paper presents a machine learning method, namely a decision tree, for 

prediction of concrete carbonation depth.    

2 Data understanding and preparation 

2.1 Data understanding  

Experimental data obtained from [7] is used to develop a model for predicting the 

depth of carbonation. This data were prepared for Finnish DuraInt-project. The 

project was carried out in cooperation between Aalto University and VTT Technical 

Research Centre of Finland. The data consists of concrete mixture ingredients and 

fresh and hardened properties of 46 specimens. Carbonation depths for half of the 

concrete specimen were conducted at the age of 28 days and the remaining half at the 

age of 56 days. The accelerated carbonation tests were performed by applying CO2 of 

1% in a controlled environment (temperature 21°C and relative humidity 60%) in 

accordance with EN 13295. The data contain both numerical and categorical inputs. 

In this work, only data of the concrete mixture ingredients and the carbonation depth 

is used, which is in total 15 features. These are: cement type, water to binding ratio 

(w/b), cement, blast-furnace slag (BFS), fly ash (FA), total effective water, total 

aggregate, aggregate < 0.125mm, aggregate < 0.25mm, aggregate < 4mm, product 

name of plasticizer, plasticizer, product name of air-entraining agent, air-entraining 

agent, carbonation period and carbonation depth.  

2.2 Data preparation   

An input matrix of [46x15] predictor values from concrete mixture parameters was 

arranged. Each column of an input matrix represents one variable, and each row 

represents one observation. A numeric column vector, carbonation depth, with the 

same number of rows as input matrix was prepared and assigned as a target. Each 

entry in output vector is the response to the data in the corresponding row of the input 

matrix. Since the environmental conditions for all test specimens were identical, this 

parameter is not included in the predictor matrix. The dataset were used for both 

training and testing datasets with 10-fold cross-validation. 
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Fig. 1: Example of a dataset and the corresponding decision tree. 

 

3 Modeling carbonation depth using decision trees 

Decision tree is a nonparametric hierarchical data structure which implements the 

divide-and-conquer strategy. It is composed of internal decision nodes and terminal 

leaves as illustrated in Figure 1. The left panel plots the data points and partitions and 

the right panel shows the corresponding decision tree structure. Each decision node 

implements a test function with discrete outcomes labeling the branches. Given an 

input, at each node, a test is applied and one of the branches will be chosen depending 

on the outcome. This process starts at the root and is repeated recursively until a leaf 

node is hit, at which point the value written in the leaf constitutes the output [8]. 

 In this work, three different decision trees are used to predict concrete 

carbonation depth. These are regression tree, ensemble bagged regression tree and 

bagged regression tree after features reduced. All the trees were developed using 

Matlab. 

3.1 Regression tree  

The structure of the regression tree is the same as that of the tree presented in Figure 

1. The only difference is the leaves which contain real numbers instead of class labels. 

The regression tree is trained over the training dataset. The performance of the 

developed tree is measured by mean square error (MSE) and mean absolute error 

(MAE) on both training and testing dataset. MSE, the mean square error between 

predicted output (𝑌̂𝑖) and target (𝑌𝑖), is the most common measure of accuracy, Eq. 

(2). The MAE of Eq. (3) is the more intuitive measure and is less sensitive to outliers. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑁
𝑖=1   (2) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑖 − 𝑌̂𝑖|

𝑁
𝑖=1   (3) 

where 𝑌̂𝑖 is the predicted output value, 𝑌𝑖  is the measured target value, and 𝑁 is the 

number of observations. 

 The resulting MSE values for training and test dataset were 0.0416 and 4.3108, 

respectively. Significant difference in MAE of training and testing dataset is also 

observed. All these show that the developed regression tree generalized the test data 

poorly because it overfitted the training data as seen in the regression plot, Figure 2. 
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3.2 Bagged ensemble regression tree  

Bagging is one of the most effective methods that can be used to improve the 

predictive performance of a tree model by reducing the variance associated with 

prediction. This technique draws multiple bootstrap samples from the training dataset 

and generates multiple predictor trees, and then, the results are combined by 

averaging to obtain the overall prediction [9, 10]. 

 An ensemble of bagged regression tree was developed with an initial default 

tree and leaf size. The performance evaluation indicates that ensemble of bagged 

regression tree has a high generalization capacity than the regression tree presented in 

Section 3.1. The MSE of the training and testing dataset was 0.9701 and 2.7223. 

Regression plot of predicted vs measured carbonation depth on training dataset for 

bagged ensemble regression tree is shown in Figure 2.  

 

Fig. 2: Regression plot of predicted vs measured carbonation depth on training dataset for 
regression tree (left) and bagged ensemble regression tree (right). 

 

 
Fig. 3a: Out-of-bag mean square error vs number of grown trees (left). 3b: Relative importance 

of the input variables of the bagged ensemble regression tree (right). 
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3.3 Reduced bagged ensemble regression tree 

In order to minimize the prediction error of the bagged ensemble, we compute 

predictions for trees with different leaf sizes on its out-of-bag observations, Figure 3a.  

It can be observed that the out-of-bag error decreases well with the number of grown 

trees for leaf size of five. The relative importance of the input variables of the bagged 

ensemble regression tree is illustrated in Figure 3b. It can be clearly seen that the 

carbonation period and w/b are the foremost influential predictors for this dataset. 

Next to these variables, amount and types of cement, plasticizer and the distribution 

of aggregate play considerable role in predicting the carbonation depth for this 

dataset. This is a useful finding because plasticizer and aggregate distribution were 

overlooked in several existing analytical models.   

 After determining good predictors and an ensemble size from the out-of-bag 

error, a new bagged ensemble regression tree was constructed to enhance its 

performance further. In this case, the optimal number of leaf and trees was chosen as 

5 and 150, respectively. Two parameters, BFS and FA, were reduced out of the total 

15 features since they are unimportant to predict the carbonation depth in this dataset. 

The MSE of training and testing dataset of this model was 0.9536 and 2.2990. Figure 

4 illustrate the predicted and the measured carbonation depth with the predicted error.  

3.4 Performance comparison 

An average of five round statistical performance measurements of all the carbonation 

prediction models are listed in Table 1. As shown in this table, reduced ensemble 

bagged regression tree is statistically outperformed all the other models for this 

dataset. The MAE values of this model for training and test dataset are 0.4755 and 

0.5261, respectively. These indicate that this model reasonably fits the measured data 

and has relatively better generalization capability. All the performance measurements 

of the models are valid only for the considered specific dataset. If a different dataset is 

employed, the performance may differ noticeably. Generally, this study revealed the 

applicability of decision tree based models to predict concrete carbonation depth. As 

part of future work, the model will be evaluated using more experimental data. 

 

Fig. 4: Measured and predicted carbonation depth using bagged ensemble regression tree 

with the prediction error. 
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4 Conclusions 

Three concrete carbonation depth prediction models based on decision tree method 

are presented. To develop the models, three different decision trees were adopted. 

They are regression tree, bagged ensemble regression tree and reduced bagged 

ensemble regression tree. The models prediction capacity was examined based on 

mean square errors and mean absolute error. Models developed using bagged 

ensemble with and without features extraction predict the carbonation depth with 

reasonably low error. The model developed using the former method has superior 

performance with relatively better generalization capability. This confirms the 

advantage of feature and ensemble size selection in improving performance. 

Furthermore, the bagged ensemble regression tree identified important variables that 

influenced the carbonation rate which was not considered in the existing analytical 

models. The models have potential to be part of a service life management system. 
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Models 
MSE MAE 

Train Test Train Test 

Regression tree 0.0416 4.3108 0.0740 1.3437 

Bagged ensemble regression tree 0.9701 2.7223 0.4927 0.6283 

Reduced bagged ensemble regression tree 0.9536 2.2990 0.4755 0.5261 

Table 1: Performance comparison of carbonation depth prediction models. 
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