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Abstract. Learning from labelled data is becoming more and more chal-
lenging due to inherent imperfection of training labels. In this paper, we
propose a new, generalised label noise model which is able to withstand
the negative effect of both random noise and a wide range of non-random
label noises. Empirical studies using three real-world datasets with in-
herent annotation errors demonstrate that the proposed generalised label
noise model improves, in terms of classification accuracy, over existing
label noise modelling approaches.

1 Introduction

A classification problem is a task where one wants to infer a {0,1}-valued func-

tion ĥ : X → Y using a finite sample D = (xn, yn)
N
n=1

: xn ∈ X , yn ∈ Y = {0, 1}
drawn from some joint distribution on X × Y. One can then use the estimated
ĥ to predict y for any new data x drawn from the same distribution. Here x is
an m-dimensional feature vector and y is its label assignment. In an idealised
scenario, yn are assumed to be perfect. However, in reality, there is a possibility
that the true label, yn, is corrupted by some unknown factor so that we observe
a flipped noisy ỹn instead of the true yn. The quality of training labels has
been shown to effect the performance of a classifier in a wide range of classifi-
cation problems [1, 2, 3, 4]. Ensuring a close to perfect labelling turns out to
be too costly in practice, especially with the scale and complexity of today’s
classification tasks.

Class label noise can be loosely categorised into two types: random and
non-random noise. The random label noise occurs independently of the input
features. A non-random noise, on the other hand, is a noise which is influenced by
the input features and hence is more general. Also, the non-random noise may be
encountered more often than random noise in real-world problems. Interestingly,
previous model-based approaches to learning from noisy labels have been focused
on random noise due to simplicity [5, 2, 4]. The study of the latter type is still
scarce [6, 7, 8]. The reader is referred to [9] for a survey on label noise problems.

Label noise modelling can be done at several levels of granularity. At the
finest level, a noise model is associated with each data point. For example, a
robust Logistic Regression proposed in [8] treats label noise of each training in-
stance individually by incorporating a shift parameter into the sigmoid function.
The parameter’s role is to control the cutting point of the posterior probabili-
ties of the two classes. This kind of local approximation is seemingly an ideal

∗This work is supported by the Faculty of Science, Chiang Mai University.

349

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



approach for the problem as it provides all the flexibility needed for capturing
variations of noises. However, the method need to estimate a huge number of
noise parameters which unfortunately grows with the number of training in-
stances. At the other end of the spectrum, a global statistic can be used for
summarising the label flipping probabilities of all instances in the same class.
For example, the work in [5], which targets random label noise, assumes that
the instances in the class share the same label flipping probability. This signifi-
cantly reduces the number of free parameters from O(N) to O(K), where N is
the number of training instances and K is the number of classes. For this reason
the global approach is widely adopted for solving random label noise problems
[5, 2, 4]. Nonetheless, while the approach alleviates the curse of dimensionality,
it is inevitably too restricted.

In this paper, we attempt to combine the advantages of the two approaches by
proposing a more general label noise model which is flexible enough for dealing
with both random and non-random label noises and is also simple such that
the number of parameters is still merely of the order of the number of classes.
We do this by expressing label flipping probabilities by a parametric function.
We employ the probability density function of the exponential distribution to
model the likelihood of label flipping. This function is chosen in order to capture
noises in a scenario where points that live closer to the decision boundary have
relatively higher chance of being mislabelled than those that live further away.
Experiments show that the proposed method is able to counter the negative effect
of the label noise while maintaining the computational feasibility of learning the
model. The approach is similar to that discussed in [7] but they formulated the
noise rate of a point as a function of deviation from its class mean.

2 The generalised label noise model

One of the principled ways for dealing with random label noise problem is the
use of a latent variable model [5, 4]. The approach represents the class posterior
probability of the observed label with a weighted posterior probability of the
true class labels. The probability of the observed label being class k for a point
xn under the latent variable model is then given by: P̃ k

n =
∑

j p(ỹn = k|y =
j) · p(y = j|xn, θ). Here p(ỹ = k|y = j) denotes a label flipping probability
that the true class label j was flipped into the observed class label k, which is
independent of the input vector.

Arguably, such assumption is rather unrealistic for real-world problems as
input features can have an influence on the occurrence of mislabelling, so the
random latent variable model may not be appropriate. To generalise the above
noise model to accommodate label noise which may depend on the input vector,
we redefine the label flipping probability to be a function of the input vector, its
class label and the parameters of the classification model.

P̃ k
n =

∑

j

F(xn, ỹn, yn = j, θ)p(yn = j|xn, θ) =:
∑

j

F(xn, ỹn, yn = j, θ)P j
n (1)
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where F(xn, ỹn, yn = j, θ)
def
= p(ỹn = k|yn = j,xn, θ) = ωjk

n . The function F
can be any function which best describes the nature of the label flipping and
has to satisfy the probabilistic constraint, i.e., outputting a value between zero
and one. The proposed model will be referred to as the generalised label noise
model. Note that the random label noise model used in [5, 2] is a special case of
the above noise model, where F is defined to be a constant polynomial.

According to our initial assumption that points lie close to the decision
boundary have higher chance of being mislabelled than those that live further
away, we find that a probability density function of the exponential distribution
would suit our purpose. The noise function will take as input a distance of the
point (xn, ỹn = k) from the decision boundary. Denoting the distance by Zk

n,
we define the label flipping probabilities to be:

p(ỹn = 1|yn = 0,xn, θ) =
exp (−Z1

n/γ0)

γ0
= ω01

n (2)

p(ỹn = 0|yn = 1,xn, θ) =
exp (−Z0

n/γ1)

γ1
= ω10

n (3)

Using
∑

k p(ỹ = k|y,x, θ) = 1, one can easily derive ω00

n and ω11

n . Since Zn

is non-negative, exp (−Zk
n/γj)/γj ∈ [0, 1] when γj > 1. We will employ a log

barrier function, log(γj − 1) to impose this constraint.
For the sake of exposition, we will use a Logistic Regression parametrised

by θ = w as our base classifier. Here, the parameter w is the weight vector or-
thogonal to the decision boundary. The Euclidean distance of a point from the
decision boundary of the classifier is given by Zn = xT

nw/‖w‖. Putting every-
thing together, the objective function of the generalised robust logistic regression
(gLR) is a penalised log-likelihood:

L =
N
∑

n=1

ỹn log
[

ω
11

n P
1

n + ω
01

n P
0

n

]

+ (1− ỹn) log
[

ω
00

n P
0

n + ω
10

n P
1

n

]

−

m
∑

i=1

αi|wi|

+
1

∑

j=0

λj log(γj − 1) (4)

where αi > 0 is a Lagrange multiplier and λj is a parameter expressing the
sharpness of the barrier function at the boundary. The first two terms represent
the log-likelihood, the third term is the L1 regulariser and the last term enforces
the constraint that γj > 1. The class posterior probability is modelled by the

sigmoid function: P 1

n = 1/(1 + e−w
T
x).

To optimise the objective, we use the gradient-descent method to update w,
γ0 and γ1. We adopt an effective smooth approximation, |wi| ≈ (w2

i + η)1/2,
originally proposed by [10] to take care of the discontinuity of the objective at
the origin caused by the regularisation. We used η = 10−8 in the reported
experiments. The gradient of the objective function w.r.t w is:

∂L

∂w
=

N∑

n=1

[(
ỹn

P̃ 1
n

−
1− ỹn

P̃ 0
n

)
(1− ω10

n − ω01

n )

]
P 1

nP
0

nxn −
m∑

i=1

αiwi√
(w2

i + η)
(5)
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Next, the gradients of the objective w.r.t. γ0 and γ1 are found:

∂L

∂γ0
=

N∑

n=1

(
ỹn

P̃ 1
n

−
1− ỹn

P̃ 0
n

)(
2Z1

n

γ2

0

+
2

γ0

)
ω01

n P 0

n +
λ0

γ0 − 1
(6)

∂L

∂γ1
=

N∑

n=1

(
1− ỹn

P̃ 0
n

−
ỹn

P̃ 1
n

)(
2Z0

n

γ2

1

−
2

γ1

)
ω10

n P 1

n +
λ1

γ1 − 1
(7)

Further, the value of the regularisation parameter αi is determined using the
Bayesian regularisation technique. A Bayesian interpretation of the objective
w.r.t. γ and λ is given by: log p(w|D) = log p(D|w) + log p(w|α) + const.. The
conditional prior p(w|α) is the the product of independent Laplace distributions

p(w|α) ≈
∏m

i=1 αi

2m
exp(−

∑m

i=1
αi(w

2

i +η)1/2). The parameter-free Jeffrey’s priors
is used to model each of the α: p(αi) ∝ 1

αi
. The marginal prior p(w) is then

given by the integral
∫
∞

o
p(w|α)p(α)dα = 1

2

∏m

i=1

1

(w2
i+η)1/2

, which implies that

− log(w) =
∑m

i=1
log(w2

i + η)1/2. Taking derivative of the resulting negative log
of the marginal prior, we have:

−
∂ log p(w)

∂wi

=
1

(w2

i + η)1/2
∂
∑m

i=1
log((w2

i + η)1/2)

∂wi

(8)

From the above we read off the estimate of the regularisation parameter: αi =
1/(w2

i + η)1/2. Next, we propose to use a simple heuristic, λj = 1/(γj − 1), for
setting the value of λj . The intuitions behind this heuristic are twofolds: first, to
enforce increasingly larger penalty as γj approaches 1, in which case the penalty
is amplified by λj > 1 and second, to prevent γj from being unreasonably large,
in which case the corresponding λj will control the gain in likelihood.

With everything in place, the optimisation is then to alternate between up-
dating w, γ0, γ1 and the regularisation parameters in turn.

3 Experiments

We evaluated the proposed model on three real-world datasets which originally
contain labelling errors according to literature. Two datasets are from bio-
medical domain namely Colon and Breast datasets (cf. [1]). The last one is an
image classification dataset called the Websearch [4], constructed by querying
a search engine for images matching a keyword and taking the keyword used
to be the class label of the retrieved images (For more details see [4]). The
characteristics of all datasets used in this study are summarised in Table 1.

In addition, since the ground truths labels are available for all the datasets,
we further evaluate the model by artificially injecting label noise of various types
into the cleansed version of the datasets. To generate the non-random label noise
we first train an SVM on an untainted version of the datasets. The resulting
optimal weight vector, together with a label noise function, are used to calculate
the mislabelling probabilities of the input instances. Here we use the PDF of the
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Dataset # of samples (pos./neg.) # wrong labels (pos./neg.) # features

Colon 40(T)/22(N) 5/4 2000
Breast 25(ER+)/24(ER-) 4/5 7129

Websearch 515(bike)/515(not bike) 100/83 1318

Table 1: The characteristics of the datasets employed in this study
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Fig. 1: Generalisation error (%) of the four classifiers on various types of label noises

gamma distribution with the shape/scale parameters pair being (1,2),(2,2),(3,2)
and (5,1) to sample label flippings. We also test our model on a random noise
scenario where 40% of the training labels are contaminated. We performed 20
experiment repetitions for each level of contaminations using 80/20 train/test
split except on Breast dataset where we use 90% of the samples for training due
to the small sample size and high dimensional nature of the dataset. We study
comparative performances of the proposed gLR versus rLR [4], LR+shift [8] and
the gold standard SVM with RBF kernel.

3.1 Results and Discussion

We first report the experimental results from the Websearch dataset. The noise
in this dataset is less likely to appear at random. This is because the search
engine might have used textual information around the image during the search
process. The results in Fig.1a, demonstrate that gLR is capable of dealing
with all types of noises, from the noise originally inherent in the dataset to
other simulated noises including random label noise. The rLR, which relies
on the random noise assumption, performs reasonably well only when random
noise is presented (ranked second) but lags behind in non-random noise cases.
The LR+shift is more robust than rLR on all type of noises studied except on
extreme random noise. The SVM ranked second overall in this dataset but its
performance drops significantly when random noise is presented.

Fig.1b and Fig.1c summarise the results from Colon and Breast datasets.
Again, in these datasets the nature of the inherent noise would be far from being
random. It is expected that noise would appear more in the region of maximum
confusion. As can be seen from the results, the gLR employing the proposed
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generalised label noise model performs better than the other robust classifiers
and the SVM in almost all types of noise except the original Breast dataset where
SVM performs better. We speculate firstly that SVM can cope with a mild noise
and secondly that the RBF kernel used might have helped. However the power
of non-linearity leads to serious overfitting in some other cases. Overall, we
can conclude based on these empirical evidences that the proposed generalised
label noise model helps counteracting the negative effect of various types of
noises including random noise, and that the existing random noise model is less
suitable for real-world applications where non-random is present.

4 Conclusion

We presented a novel label noise model for classification where the training labels
are inaccurate. The proposed model seeks to explain the label noise using any
customised label noise function deemed appropriate for the task. We paired the
proposed model with the Logistic Regression classifier and evaluated the robust
classifier on a non-random noise scenario where noise appears more in the region
near the optimal decision boundary. The experimental results revealed that the
proposed model was able to counter the negative effect of such label noise, and
outperformed both the gold standard SVM and the existing robust classifiers.
The future work will be to investigate theoretical aspects of the proposed model.
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