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Abstract. Proportional Cox hazard models are commonly used in sur-
vival analysis, since they define risk scores which can be directly inter-
preted in terms of hazards. Yet they cannot account for non-linearities in
their covariates. This paper shows how to use random non-linear projec-
tions to efficiently address this limitation.

1 Introduction

Survival analysis is a class of statistical methods for studying the occurrence
and timing of events. Such events include e.g. relapse, metastasis or death in
cancer studies. One of the specific issues with survival data is the censoring.
A patient is censored if he disappears or leaves the study before the event of
interest occurs. Cox models [1] can be used in such settings to relate covariates,
such as gene expression values, to the time to occurrence. However, Cox models
cannot handle as such non-linearities in their covariates, what may restrict their
usefulness in some settings.

This paper aims to show that Cox models can easily handle non-linear rela-
tionships if one uses random non-linear projections. Such tools have been used
in extreme learning [2] to obtain results which are close to those of support vec-
tor machines, but at a much smaller computational cost. Random projections
are used here with Cox models and a feasibility study is performed. Results are
comparable to those of standard Cox models, but the proposed method can be
used to handle data with non-linear relationships.

The remaining of this paper is organized as follows. Sections 2 and 3 review
survival analysis and show the interest of Cox models for this problem. Sec-
tion 4 explains what random non-linear projections are and how to use them.
Section 5 details the proposed methodology to extend the Cox model, which is
experimentally assessed in Section 6. We conclude this work in Section 7.

2 Survival Analysis

In survival analysis, each instance i € {1,...,n} is characterized by a 3-tuple
(t;,8;,%;) where x; contains the d covariates and t; is either the time of the event
(such as metastasis or death) when d; = 1 or the censoring time when §; = 0.
For each patient 4, the objective is to model its associated hazard h;(t). This
time depending function gives the probability of a patient i to have the event at
time ¢ knowing that he has not yet experienced the event before.
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Such a framework is very common in cancer research and clinical studies.
Many specific techniques exist to handle survival data such as survival-SVMs [3],
partial logistic artificial neural networks [4], etc. The standard method to deal
with survival data is the Cox proportional hazard model [1]. The Cox model is
a generalized linear model. It has the advantages of being both efficient (fitting
the model is a convex problem) and easily interpretable in terms of hazard.

3 Cox Regression

The Cox regression assumes the hazard h;(t) and hy(t) of any pair of instances
(i,k) to be proportional [1]. The hazard of a patient can then be rewritten as
the product of a baseline hazard ho(t) and a positive function of the covariates:

hi(t) = ho(t) exp (B x;). (1)

Consequently, the partial likelihood of the Cox model can be written as

5
_ - exp (B7x;) !
H= z];[ > ker(t) eXp (BT xy) (2)

where R(t;) = {k|tx > t;} is the set of patients still at risk right before time ¢;.

Here, the R package in [5] is used to train the Cox model, where an Iy (ridge)
penalty is added to the log-likelihood of the model to prevent overfitting. The
risk score, 7; = B'x;, is the final result of the Cox model. It can be directly
interpreted in terms of hazard function for each patient : h;(t) = ho(t) exp (r;).

4 Non-linear Random Projections

A potential limitation of the Cox model is that it cannot deal with non-linear
relationships. Hence, a natural extension consists in adding support for features
which must be non-linearly transformed to compute the hazard function. Many
approaches exist in machine learning to obtain non-linear models like kernels
or neural networks. However, kernelized Cox models [6] and survival-SVMs [3]
come with the additional complexity of defining an appropriate non-linear kernel,
whereas survival neural networks [4] are slow to learn. This paper focuses on a
different approach which allows one to keep the interpretability and simplicity
of Cox regression.

In extreme learning, it has been shown that random non-linear projections
of the inputs [2] can be used to achieve state-of-the-art results in both non-
linear classification and regression [7]. Those non-linear projections are obtained
independently from training data: only their dimensionality d and the number
of non-linear projections m must be known. The p-th projection is defined as:

d
zp(xi) =0 Z Wiptij + by (3)

j=1

where o is a non-linear function, W}, is the weight between the j-th input z;;
and the p-th projection and b, is the bias used for the p-th projection. Non-
linear projections could be optimized but Huang et al. [2] have shown that one
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can simply (i) draw the weights and biases in Equation (3) randomly (e.g. from
a uniform or Gaussian distribution) and (ii) keep them fixed during learning.
The advantage of the above strategy is that state-of-the-art results are ob-
tained in non-linear classification and regression [7] at the cost of linear methods.
Indeed, the matrix of inputs X is replaced by the matrix of random non-linear
projections
zi(x1) -0 zm(x1)
z=| . (4)
21(Xn) o Zm(Xn).

Afterwards, fast, linear methods (linear regression, linear SVMs, etc) can be
used with Z instead of X. Using random non-linear projections offers a good
compromise between computation needs and prediction accuracy. This view has
been popularized in [8, 9, 10] where it is shown that the number of random
projections can be set to a large number (e.g. m = 10%) or even be infinite [11]
if regularization is used to control the model complexity.

5 Proposed Methodology

This paper proposes to use random non-linear projections as input to a Cox
model rather than the original covariates. The main advantage is that non-linear
relationships can now be modeled, while the interpretability of the Cox model
output is preserved in terms of hazard. Also, contrarily to e.g. SVMs, we do not
need to choose a kernel nor to tune its parameters. Since works like [8, 9, 10, 11]
show that regularized linear methods work well with large numbers of random
non-linear projections, Iy regularization can be used to control the complexity
of the resulting non-linear Cox model. Weights and biases are here drawn from
a uniform distribution between -2 and 2, and the inputs are normalized before
being non-linearly transformed. Section 6 assesses this methodology.

6 Experiments

This section validates the use of random non-linear projections with a Cox model.
Experiments are performed on synthetic and real datasets; performances in sur-
vival regression are assessed according to the concordance index (C-index). The
C-index lies between 0 and 1 and measures to which extent the risk scores are
concordant with the time to event, that is, whether a patient with a higher risk
actually experience the event before a patient with a lower risk [12]. A poor
model is expected to have a C-index around 0.5. The I3 regularization constant
A of the Cox model is tuned with 10-fold cross-validation on the training set.
A 10-fold cross-validation is used in all experiments with real datasets. All
results are reported in forest plots containing: the average test performance in
C-index for each model and the p-values of a paired t-test against the standard
Cox proportional hazard model. The black squares are centered on the average
C-index. The horizontal grey lines correspond to the 95% confidence intervals.

121



ESANN 2015 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
Available from http://www.i6doc.com/en/.

CIND  p.value CIND  p.value CIND  p.value

Cox 0.50 ] 0.51 L] 0.82 n
Cox-R100 0.65 3.03e-08 L] 0.64 4.06e-11 = 0.80 1.69e-03 L]
Cox-R200 0.67 8.36e-08 L] 0.66 3.80e-12 L] 0.81 2.98e-03 ]
Cox-R500 0.72 6.38e-09 L 0.69 8.39e-13 L) 0.81 9.01e-03 |
Cox-R1000 0.75 6.22e-10 n 0.71 2.87e-12 B 081 3.27e-02 ]
Cox-R2000  0.76 1.77e-10 B 071 6.03e-12 B 081 2.37e-01 ]
Cox-R5000  0.76 8.35e-11 B 071 9.79%-12 B 081 1.79e-01 |
— —— ——
05 055 06 065 07 075 05 055 o5 06 07 079 08 om o8
Concordance Index Concordance Index Concordance Index

Figure 1: Results in C-index on synthetic data sets. Left, center and right plots
respectively for fi, fo and fs.

6.1 Results on Artificial Non-linear Datasets

Artificial data are first considered to assess to which extent our approach is
able to deal with non-linear features. A data matrix X € R"*¢ is drawn from
a standard distribution A(0,1). The survival data (¢;,0;) are generated from
two Weibull distributions (for event and censoring times) such that the hazard
h;(t) depends on a combination f(x;) of the features : h;(t) x exp(f(x;)).
The Weibull shape parameters are set to 2.5 and 1 respectively for censoring
and event times. The scaling parameters are 2914 and 20000 exp(—1.5f(x;)/0),
where o is the standard deviation of f(x;) over all generated samples'. Two
non-linear combinations and one linear combination of features are considered
here:

d

d d
AG) =D af, faxi)=> exp(-zy;) and fs(x;) =Y ajzi;. (5
Jj=1 j=1

Jj=1

Results are averaged in Figure 1 over 10 independent runs with n = 1000
instances (200 for training, 800 for validation) and d = 5 features. The Cox
proportional hazard model is trained (i) on the 5 original features and (ii) using
between 100 and 5000 random non-linear transformations of those features.

As expected, a standard (linear) Cox model is not able to deal with non-linear
features (f1 and f2). The Cox model offers significantly better results when the
original features are first transformed through non-linear random projections.
Such a strategy is even not detrimental in the linear case (f3). If a sufficiently
large number (here 2000) of random projections is considered, the results are
not significantly different from those of a standard Cox model. In general, the
number of random projections to consider needs not be carefully tuned provided
it is chosen large enough.

6.2 Results on Real-World Cancer Datasets

This section shows results for three real-world cancer datasets. The first real
dataset is the flchain? dataset, which contains 8 features for 7874 patients. Mul-
tiple causes of death were recorded and the death due to a circulatory system
diseases is considered here. Others causes of death are seen as censoring, which
is one way to deal with competing risks [13]. The second dataset consists of

I Those values were chosen to produce events and censoring times similar to real data.
2available in the survival R package http://cran.r-project.org/web/packages/survival/
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Figure 2: Results in C-index with the flchain, breast and colon datasets.
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Figure 3: Results with the flchain dataset changing the ls regularization con-
stant. Left and right plots respectively for 200 and 500 random projections.

five pooled breast cancer datasets from the GEO database (accession numbers:
GSE2034, GSE5327, GSE7390, GSE2990, GSE11121 and GSE6532). 75% of the
features with the lowest variances are removed, which is a standard pre-filtering
of such high-dimensional data. The final dataset contains 1054 patients with
5571 features. The third dataset consists of seven pooled colon cancer datasets
from the GEO database (accession numbers: GSE39582, GSE17536, GSE17537,
GSE14333, GSE29621, GSE29623 and GSE38832). After a similar pre-filtering,
the final dataset contains 1234 patients with 13669 features.

Figure 2 shows results obtained for the flchain, breast and colon datasets.
The C-index reaches a plateau when the number of projections increases. Glob-
ally these results do not exhibit statistically significant differences with those of
a standard Cox model. They illustrate that the proposed approach is effective
even though explicit non-linearities are not required for these datasets.

The sensitivity of results to the choice of the l5 regularization parameter \ is
studied in Figure 3 using the flchain dataset. The number of random projections
is fixed to 200 and 500 and results are reported with A equal to {%, %, %, 1,10, 20}
times the number of dimensions. Results are improving while increasing A and
reach a plateau, here when ) is roughly equal to the number of projections. The
choice of A seems robust and it does not seem difficult to tune.
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7 Conclusion

This paper shows how random non-linear projections used in extreme learn-
ing can also be used to extend Cox models. Using the proposed methodology,
survival analysis can be performed even with non-linear relationships between
covariates and the associated risk scores. The computational cost is comparable
to the cost of learning standard Cox models. Since Cox models are essentially
used to compute risk scores, the results are still readily interpretable in terms of
hazards. Such an approach avoids the additional complexity of defining an ap-
propriate non-linear kernel or of training complex neural networks. Our future
work includes testing the methodology of this preliminary work on survival data
with significant non-linear effects.
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