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Abstract. This paper presents a new approach to online multi-class
learning with bandit feedback. This algorithm, named PAB (Passive Ag-
gressive in Bandit) is a variant of Online Passive-Aggressive Algorithm
proposed by [2], the latter being an e↵ective framework for performing
max-margin online learning. We analyze some of its operating principles,
and show it to provide a good and scalable solution to the bandit classi-
fication problem, particularly in the case of a real-world dataset where it
outperforms the best existing algorithms.

1 Introduction

Online learning is an e↵ective way to deal with large scale applications, espe-
cially applications with streaming data. Online Passive-Aggressive learning (PA)
provides a generic framework for online large-margin learning, with many appli-
cations [4,5]. PA uses hypotheses from the set of linear predictors. But it only
works in the conventional supervised learning paradigm, in which, the learner
has access to the true labels of the data after making its prediction. In contrast,
the multi-class classification Bandit setting provides a framework where the label
information is not fed back to the classifier. The learner only receives binary re-
sponse telling whether the prediction was correct or not. This paradigm applies
to lots of domains, including many web based applications.

There are several classification algorithms that address the bandit setting.
The Banditron [1], based on the Perceptron algorithm, is the most ”classical”
one, having a number of mistakes asymptotically bounded. For the case where
the data is linearly separable, the number of mistakes is bounded in O(

p
T ) in

T rounds. Another bandit algorithm, named ”Confidit”, was proposed by [3].
In the confidit approach, the bound of the regret (sum of mistakes with respect
to the optimal classifier) is improved from of O(T 2/3) to O(

p
T log T ). At last

the Policy Gradient [7], stemming from the Reinforcement Learning framework,
also provides an e�cient methodology to deal with the problem [6].

In this paper, we discuss a new algorithm: Passive-Aggressive in Bandit(PAB),
i.e. we adapt the PA approach [2] to the bandit setting. With PA’s advantage,
PAB should in principle perform a max-margin with partial feedback.

In next sections, we will discuss the new bandit algorithm PAB, including
its update rules. And we provide some experiments to compare the cumulative
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loss on synthetic and real-world datasets.

2 Preliminaries

Online learning is applied in a sequence of consecutive rounds. On round t, the
learner is given an instance vector x

t

2 Rd and is required to predict a label
out of a set of multi-class [k] = {1, ..., k}. We denote by ŷ

t

the predicted label .
In the general setting, after its prediction, it receives a correct label associated
with x

t

, which we denote by y
t

2 [k]. In bandit setting, the feedback is a partial
information I[ŷ

t

= y
t

], where I[ŷ
t

= y
t

] is 1 if ŷ
t

= y
t

, others equals to 0. It’s
telling whether the prediction is correct or not.

The prediction at round t is chosen by a hypothesis h
t

: Rd ! [k], where h
t

is taken from a class of hypothesis H parameterized by a k ⇥ d matrix of reals
w, and is defined to be:

h
t

= argmax
i2[k]

x
t

wT

i

(1)

where w
i

is the ith row of the matrix Rk⇤d.
Consistently with [2]’s writing, a feature function: �(x, i) is a k ⇥ d matrix

which is composed of k features vectors of size d. All rows of �(x, i) are zero ex-
cept the ith row which is set to x

t

. It can be remarked that < �(x, i),�(x, j) >=
kxk2 if i = j and 0 otherwise.

3 The algorithm Passive-Aggressive in Bandit

In this section, we introduce a new learning algorithm, which is a variant of PA
adapted to the bandit setting.

3.1 Online Passive-Aggressive learning algorithm

The goal of online learning is to minimize the cumulative loss for a certain
prediction task from the sequentially arriving training samples. PA achieves
this goal by updating some parameterized model w in an online manner with
the instantaneous losses from arriving data x

t,t�0 and corresponding responses
y
t,t�0. The losses l(w; (x

t

, y
t

)) can be the hinge loss. PA’s update derives its
solution from an optimization problem:

min
w

1

2
kw � w

t

k2 s.t.l(w; (x
t

, y
t

)) = 0 (2)

Namely, each instance x
t

is associated with a single correct label y
t

2 Y and
the prediction ŷ

t

extends by Eq.(1). A prediction mistake occurs if y
t

6= ŷ
t

.
With the cost-sensitive setting, there is a cost ⇢(y, y0) associated with predicting
y0 6= y when the correct label is y.

PA incorporates the cost function into the online update. The update in
Eq.(2) has the closed form solution,

w
t+1 = w

t

+
hw

t

, (�(x
t

, ŷ
t

)� �(x
t

, y
t

)i+ ⇢(ŷ
t

, y
t

)

k�(x
t

, y
t

)� �(x
t

, ŷ
t

)k2 + 1
2C

(�(x
t

, y
t

)� �(x
t

, ŷ
t

)), (3)
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where the constant C > 0 is defined y the user.
Intuitively, if w

t

su↵ers no loss from the new data, i.e., l
⇢

(w
t

; (x
t

, y
t

)) = 0,
the algorithm passively assigns w

t+1 = w
t

; otherwise, it aggressively projects w
t

to the feasible zone of parameter vectors that attain zero loss.

3.2 Online algorithm in bandit setting: PAB

We now present the PAB in Algorithm 1, which is an adaptation of PA for the
bandit case.

Similar to PA algorithm, at each round the prediction ŷ
t

is chosen by Bayesian
probability according to the current weight matrix w

t

, to make a reference to
Eq(1). Unlike the conventional learning paradigm, if ŷ

t

6= y
t

, it is di�cult to get
a PA update because the true labels’ information is not supported. So we need
to perform an exploration, i.e sample a label randomly from [k] with parameter
�1 and contrast this random prediction with a bandit return I(ỹ

t

= y
t

), where
ỹ
t

is the result of a random draw from a certain distribution P(Ỹ |ŷ).
The above intuitive argument is formalized by defining the update matrix Ũ

t

to be a function of the random prediction ỹ
t

. We show in the following that the
expectation of the PAB’s update is exactly the PA’s update.

PAB starts with the initiation of matrix w1 = 0. Its update contains two
items:

w
t+1 = w

t

+ U
PAB

(x
t

, ŷ
t

, ỹ
t

) = w
t

+ U
t,1 + U

t,2

U
t,1 =

I(ỹ
t

= y
t

)

P(Ỹ = ỹ
t

|ŷ
t

)
U
PA

(x
t

, ŷ
t

, ỹ
t

)

U
t,2 =

I(ỹ
t

= y
t

)� P(Ỹ = ỹ
t

|ŷ
t

)

P(Ỹ = ỹ
t

|ŷ
t

)
· ⇢

c

�(x
t

, ŷ
t

)

2 k x
t

k2 + 1
2C

(4)

where U
PA

(x, ŷ, y) is the classical passive-agressive update. PAB’s update con-
tains two items. The first item is controlled by the indicator I(ỹ

t

= y
t

), and
is nonzero only when the true label is predicted. The role of second term is to
smooth the learning process when few correct labels are available. It means that
whenever the process is blind to the true label, the loss is estimated to a fixed
number ⇢

c

; this parameter is chosen empirically.

3.2.1 Simple PAB

A simple choice is ⇢
c

= 0. The item U
t,1 is very similar to the PA’s update. The

following lemma is easy to prove:

Lemma 1. Let U
t,1 be defined as in eq.(4) and let U

PA

(x
t

, ŷ
t

, y
t

) be defined

according to eq.(3). Then, E
Ỹ

[U
t,1] = U

PA

(x
t

, ŷ
t

, y
t

).

1The parameter � refers to the definition of [1]
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3.2.2 Full PAB

The second term U
t,2 is used to reduce the variance of the update. When ⇢

c

> 0,
we need both E

Ỹ

[U
t,2] = 0 (so that E

Ỹ

[U
PAB

(x
t

, ŷ
t

, Ỹ )] = U
PA

(x
t

, ŷ
t

, y
t

))) and
E
Ỹ

[< U
t,1, Ut,2 >]  0.

Lemma 2. Let U
t,2 be defined as in eq.(4), E

Ỹ

[U
t,2] = 0.

Lemma 3. E
Ỹ

[< U
t,1, Ut,2 >]  0

The lemma 2 is easy to prove. For the lemma 3, consider:

EỸ [< Ut,1, Ut,2 >] =

kX

i=1

P(i|ŷt)I(i = yt)
UPA(ŷt)

P(i|ŷt)
I(i = yt)� P(i|ŷt)

P(i|ŷ)
⇢c�(xt, ŷt)

2 k x k2 + 1
2C

=
1� P(yt|ŷt)
P(yt|ŷt)

⇢cf(xt, ŷt, yt)

with

f(xt, ŷt, yt) =
< UPA(xt, ŷt, yt),�(xt, ŷt) >

2 k x k2 + 1
2C

then:

E
Ỹ

[< U

t,1, U

t,2 >] = I(ŷ
t

= y

t

)
1 � P(Ỹ = y

t

|ŷ
t

)

P(Ỹ = y

t

|ŷ
t

)
⇢

c

f(x
t

, ŷ

t

, y

t

) + I(ŷ
t

6= y

t

)
1 � P(Ỹ = y

t

|ŷ
t

)

P(Ỹ = y

t

|ŷ
t

)
⇢

c

f(x
t

, ŷ

t

, y

t

)

When ŷt = yt, UPA = 0 so that f(xt, ŷt, yt) = 0. When ŷt 6= yt, it can be shown that
f(xt, ŷt, yt)  0, so that:

EỸ [< U

1
t , U

2
t >]  0

For an appropriate value of ⇢
c

, the role of U
t,2 is thus to reduce the variance of

the PAB update, and thus improve the speed of the learning process.

Algorithm 1: The Passive-Aggressive in Bandit

Input: w1 = ~0.
for t = 1, 2, ..., T do

Receive x
t

2 Rd

Set ŷ
t

= argmax
r2[K]

(W
t

�(x
t

, r))

8i 2 [k] , P(Ỹ = i|ŷ
t

) = I(ŷ
t

= i) · � + (1��)
k

Randomly sample ỹ according to P(Ỹ = i|ŷ
t

)
Receive the feedback I(ỹ

t

= y
t

)
l
t

=< w
t

,�(x
t

, ŷ
t

)� �(x
t

, y
t

) > +I(ŷ
t

= y
t

)

U
t,1 = I(ỹ

t

=y

t

)

P(Ỹ=ỹ

t

|ŷ
t

)
U
PA

(x
t

, ŷ
t

, ỹ
t

)

U
t,2 = I(ỹ

t

=y

t

)�P(Ỹ=ỹ

t

|ŷ
t

)

P(Ỹ=ỹ

t

|ŷ
t

)
· ⇢

c

2kx
t

k2+ 1
2C

�(x
t

, ŷ
t

)

U
PAB,t

(x
t

, ŷ
t

, ỹ
t

) = U
t,1 + U

t,2

Update:W
t+1 = W

t

+ U
PAB,t

(x
t

, ŷ
t

, ỹ
t

)
end
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4 Experiments

In this section, we present experimental results for the PAB and other bandit
algorithms on two synthetic and one real world data sets. The cumulative loss
is presented for each data set.

The first data set, denoted by SynSep, is a 9-class, 400-dimensional synthetic
data set of size 105. The method to generate the sample is found in [1]. The
second data set, denoted by SynNonSep, is constructed in the same way as
SynSep except that a 5% label noise is added, which makes the data set non-
separable. The third data set is collected from the Reuters RCV1 collection.
This set is made of 47236-dimensional vectors, contains 4 classes, and has a size
of 105 .

Fig.1 gives the cumulative loss obtained on the 3 datasets for di↵erent online
learning algorithms. On the SynSep data set, the Confidit algorithm provides
the best results, but the basic PAB is second best. Three out of five algorithms
attain a zero loss. The worst in that case is the Banditron, but the full PAB
also fails to reach a final zero loss. On the SynNonSep data set, the results
are rather poor in general. The Confidit and Policy gradient obtain the best
performances, with a stable final error rate around 5%. On the Reuters data, in
contrast with the synthetic datasets, the full PAB overtakes the other methods,
with a final error rate around 2.5% while the other algorithms attain 5% error,
and even worse in the case of Confidit (8% error). Besides, the PAB error rate
is constantly reducing during the learning process.

Fig. 1: Cumulative loss of Banditron, Policy Gradient, Confidit, Full PAB and
Simple PAB on the SynSep, SynNonSep and Reuters data sets. The parameters
are � = 0.014 for Banditron; ↵ = 1, ⌘ = 1000 for Confidit; ⌘ = 0.01,� = 0.001
for Policy Gradient; C= 0.001, � = 0.7, ⇢ = 0 for Simple PAB and ⇢ = 1
for Full PAB; all these parameters are under the SynSep data; � = 0.006 for
Banditron; ↵ = 1, ⌘ = 1000 for Confidit; ⌘ = 0.01,� = 0.001 for Policy Gradient;
C=0.00001, � = 0.7 for PAB under the SynNonSep data and the last parameters
are under the Reuters data: � = 0.05 for Banditron; ↵ = 1, ⌘ = 100 for Confidit;
⌘ = 0.1,� = 0.001 for Policy Gradient; C=0.0001, � = 0.6 is for the PAB.
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5 Conclusion

With the advantage of the Passive-Aggressive max-margin principle, the sim-
ple and full PAB appear e↵ective to address the bandit online learning setting.
Their first advantage is their linear complexity in space that allows to treat high
dimensional datasets on the contrary to second-order methods. On separable
data samples, the basic PAB overtakes most of the other approaches, at the ex-
ception of the Confidit algorithm, with a much lower complexity. It is however
found to perform rather poorly on noisy and real world datasets. In contrast,
the full PAB is expected to vary more smoothly over time, and is found to per-
form particularly well on the Reuters dataset. In that case, Confidit and Policy
Gradient seem to fall in a local stable solution, while the full PAB constantly
improves, issuing a better classifier.

However, the performance of the algorithm is found to depend on three free
parameters �, ⇢

c

and C. In order to avoid fastidious cross-validation, additional
investigation is needed in order to find analytic estimates of their optimal values.
Additional work on regret bounds is also needed in order to analytically compare
our approach with the other ones.

ACKNOWLEDGEMENT

This work is partially supported by the ANR-funded projet GRETA – Greedi-
ness: theory and algorithms (ANR-12-BS02-004-01).

References

[1] Sham M.Kakade, Shai Shalev-Shwartz, Ambuj Tewari. E�cient Bandit Algorithms for On-
line Multiclass Prediction. InProceedings of the 25th international conference on Machine

learning.ACM,2008 .

[2] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer. Online
Passive-Aggressive Algorithms. In Journal of Machine Learning Research, 2006 .

[3] Koby Crammer, Claudio Gentile. Multiclass Classification with Bandit Feedback us-
ing Adaptive Regularization. InThe 28th International Conference Machine learn-

ing.ICML,2011.

[4] Ryan McDonald, Koby Crammer, Fernando Pereira. Online Large-Margin Training of De-
pendency Parsers. InACL,2005.

[5] David Chiang, Yuval Marton, Philip Resnik. Online Large-Margin Training of Syntactic
and Structural Translation Features. In EMNLP,2008.

[6] Emmanuel Dauce, Timothee Proix, Liva Ralaivola. Fast online adaptivity with policy
gradient: example of the BCI ”P300” speller. Proc. of the 21th European Symposium
on Artificial Neural Networks, computational intelligence and machine learning( ESANN
2013), Verleysen, M.ed: 197-202, April 24-26, Bruges,Belgium, 2013.

[7] R.J. Williams. Simple Statistical Gradient Following Algorithms for Connectionnist Rein-
forcement Learning. Machine Learning 8 : 229-256, 1992.

408

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.


	papers1-10
	ESANN2015-68_2
	ESANN2015-88_3
	ESANN2015-35_2
	ESANN2015-26_3
	ESANN2015-100_3
	ESANN2015-73_4
	ESANN2015-15_9
	ESANN2015-27_4
	ESANN2015-65_12
	ESANN2015-33_6

	papers11-20
	ESANN2015-118_2
	ESANN2015-31_3
	ESANN2015-39_3
	ESANN2015-54_5
	ESANN2015-56_3
	ESANN2015-91_4
	ESANN2015-12_3
	ESANN2015-77_3
	ESANN2015-107_2
	ESANN2015-81_2

	papers21-30
	ESANN2015-135_2
	ESANN2015-125_3
	ESANN2015-90_4
	ESANN2015-23_5
	ESANN2015-126_2
	ESANN2015-29_2
	ESANN2015-67_2
	ESANN2015-2_2
	ESANN2015-13_2
	ESANN2015-52_8

	papers31-40
	ESANN2015-104_3
	ESANN2015-83_2
	ESANN2015-114_4
	ESANN2015-14_2
	ESANN2015-130_2
	ESANN2015-106_2
	ESANN2015-87_3
	ESANN2015-132_2
	ESANN2015-109_2
	ESANN2015-99_2

	papers41-50
	ESANN2015-131_4
	ESANN2015-50_2
	ESANN2015-95_2
	ESANN2015-10_3
	ESANN2015-41_2
	ESANN2015-48_2
	ESANN2015-102_4
	ESANN2015-18_1
	ESANN2015-43_3
	ESANN2015-49_3

	papers51-60
	ESANN2015-86_3
	ESANN2015-22_2
	ESANN2015-113_3
	ESANN2015-24_5
	ESANN2015-32_2
	ESANN2015-80_2
	ESANN2015-84_2
	ESANN2015-120_2
	ESANN2015-40_2
	ESANN2015-61_5

	papers61-70
	ESANN2015-46_4
	ESANN2015-5_4
	ESANN2015-21_3
	ESANN2015-112_2
	ESANN2015-82_9
	ESANN2015-85_3
	1 Introduction
	2 Data analytics
	2.1 Measurement data analyses (Time series)
	2.2 Observation data analysis (OS labels)

	3 Selection of classifiers for the best performance
	4 Conclusions

	ESANN2015-79_3
	ESANN2015-66_10
	ESANN2015-76_4
	ESANN2015-115_2

	papers71-80
	ESANN2015-124_3
	ESANN2015-116_2
	ESANN2015-122_4
	ESANN2015-89_4
	ESANN2015-101_10
	ESANN2015-136_4
	ESANN2015-128_3
	ESANN2015-127_2
	ESANN2015-16_1
	ESANN2015-37_6

	papers81-90
	ESANN2015-97_2
	ESANN2015-134_5
	ESANN2015-74_2
	ESANN2015-75_3
	ESANN2015-137_4
	ESANN2015-28_4
	ESANN2015-64_2
	ESANN2015-108_1
	ESANN2015-58_3
	ESANN2015-7_4

	papers91-96
	ESANN2015-111_4
	ESANN2015-45_2
	ESANN2015-34_2
	ESANN2015-110_2
	ESANN2015-59_4
	ESANN2015-69_7

	proceedings2015front.pdf
	pages i-vi
	pages vii-viii
	page ix
	pages x-xii




