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Abstract. This paper provides benchmarks for the identification of best 
performance classifiers for the detection of operational states in industrial drilling 
operations. Multiple scenarios for the detection of the operational states are tested 
on a rig with various drilling wells. Drilling data are extremely challenging due to 
their non-linear and stochastic natures, notwithstanding the embedded noise in 
them and unbalancing. Nevertheless, there is a possibility to deploy robust 
classifiers to overcome such challenges and achieve good automated detection of 
states. Three classifiers with best classification rates of drilling operational states 
were identified in this study.  

1 Introduction 

Offshore industrial engineering involves the management of highly complex 
operations in drilling rigs. Critical situations such as "Kicks", "Fluid loss" or "Stuck 
pipe" may occur during drilling operations. Such conditions are gradually reached 
following various stages of criticalities in time. Therefore, it is important that those 
stages of operations are detected and controlled during drilling processes. One way of 
achieving it is to automate the detection of drilling Operational States (OS).  It 
involves the breaking of  a drilling process into ten well-defined and exclusive drilling 
OS [1]: 1) Drilling Rotary (DrlRot); 2) Drilling sliding (DrlSld); 3) Clean 
Downwards (CleanDN); 4) Clean Upwards (CleanUP); 5) Wash Upwards 
(WashUP); 6) Wash Downwards (WashDN); 7) Move in hole (MoveDN); 8) Move out 
of hole (MoveUP); 9) Circulation on (CirclHL); and 10) Make Connection 
(MakeCN). The OS have been successfully detected on a drilling run using machine 
learning techniques with five additional principal states [1]. Further, Echo State 
Networks were adjusted to cope with unbalanced datasets in order to perform well in 
the classification of OS at a given well [2]. However, knowledge of labeled data for 
training was assumed to be available during the drilling process. Therefore, the 
challenge is to consider a real operational scenario which considers a drilling plan at 
multiple wells when labelled data becomes available after drilling, at least in one well 
on the rig.   

* This work was partly supported by the European Commission FP7 IST Programme 
under contract TRIDEC IP FP7-258723. 

Data Analytics for Drilling Operational States Classifications   

                                                           

409

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



A framework for the selection of the best performing OS classifiers is proposed in 
this study. The classifiers are trained by using a portion of available labeled data of 
OS, i.e. the training is done for a given well, while testing is performed on other wells 
for the detection of unseen OS.  

2 Data analytics 

Two types of drilling data are generated: Sensor measurements data (time series); and 
data created by drilling experts as observations, so-called OS labels. The analyses of 
both observations and measurements data are addressed in this section. 
 
2.1 Measurement data analyses (Time series) 
Measurement data are generated by sensing devices. The data exhibit complex 
behaviour (Fig. 1.) which led to further data analysis for selecting suitable classifiers. 
The complexity of the drilling time series (data behaviour) required two tests in the 
classification process: Linearity and Normality tests.  
  

 
Fig.  1. The complexity of data dynamics: (a) Block Position and (b) Hook Load 

 
Scatter plots for each time series data have been produced in order to check on data 

linearity. From the ten available measurement time series data only two showed 
linearity trends. These include Bit Depth and Hole Depth measurements. The test for 
data Normality was performed using Mardia's goodness-of-fit test for multivariate 
normality [3]. The results have shown that the drilling measurement time series data 
are non-Gaussian.             

   
2.2 Observation data analysis (OS labels) 
OS data are generated by drilling engineers as real-time observations, using expert 
knowledge assessments and Morning Reports. The latter are filled up when phases of 
drilling operations are complete and passed to the next operating drilling teams. The 
OS labels are consequently noisy and subjective. The statistical analysis of the 9 wells 
showed that 15% to 25% of OS labels were missing for each well. Also, the generated 
labeled OS occurred at different durations and frequencies, i.e. they are statistically 
imbalanced. Table 1 illustrates such issue (Well140).  

Data complexity measures [4] were recently proposed to quantify the 
characteristics of data which affect accuracy of classification such as 1) Overlaps of 
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classes in feature space; 2) Separability of classes; and 3) Class density in overlap 
region.  
 
CircHL CleanDN CleanUP DrlRot DrlSld MakeCN MoveDN MoveUP WashDN WashUP 
9.2% 5.8% 1.3% 33.8% 21.3% 16.7% 3.5% 3.8% 2.4% 2.2% 

Table 1: Distribution of OS label, Well140 
 

Fisher's discriminant ratio (F1), the ratio of average intra/inter class nearest-
neighbour distance (N2), and class density in overlapped regions (D3) represent a 
useful set of indicators for the good classification characteristics of the dataset. The 
generalization for L classes which also considers all feature dimensions was 
suggested in [5] for F1 and can be calculated as follows: 

( )
( )∑ ∑

∑

= =

= ⋅
= L

i
n
j i

i
j

L
i ii

i

n
F

1 1

1
,

,
1

μx
μμ

δ

δ ,                                            (1) 

where in  is the number of samples in class i ,δ is a similarity metric, μ  is the overall 

mean, iμ is the mean of class i , and i
jx corresponds to the sample j of class i . 

When 01 =F , a complete overlap exists between classes, while 11 −> LF means that 
there is no overlap. The intermediate values of F1 show the level of overlap between 
some classes. In this study, 97.11 =F  for training data set of 10 classes. This shows 
that although there is no complete overlap between all classes, some classes may still 
overlap. 

 N2 measures class separability in the following way: 
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N is the number of data samples, ( )ixintra  is the distance to the nearest neighbour 
within a class for a sample i ; and ( )ixinter  is the distance to the nearest neighbour of 
any other class. Low values of N2 suggest that samples of the same class are well 
separated from other classes, whereas large values of N2 indicate that they are 
dispersed. Table 2 shows N2 values, calculated for each OS (class) for drilling data. 
The DrlRot class is the best separated class from the rest of classes. Hence one 
expects that this class can be easily classified. CleanDN and MakeCN classes exhibit 
good separability, while the MoveDN has the worst separability measure, followed by 
the DrlSld and MoveUP classes. These last three states mentioned may consequently 
present some confusion during the classification process.   

The aim of the class density D3, as introduced in [5], is to determine the relative 
density of each class within an overlapping region. The lower the values of D3, the 
less number of samples lie within the overlapping region. Table 2 shows D3 values of 
samples in overlapping regions for all OS. The OS with the smallest D3s include 
DrlRot, MakeCN and CircHL. However, CleanUP, DrlSld and WashUp have shown 
D3s exceeding 60%. The rest of the OSs has shown significant high proportion of the 
overlapping regions. This analyses shows the type of challenges exists in this 
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classification problem with overlapping classes and high class densities overall. As a 
result, the selected classification algorithms need to overcome the multi-class 
imbalance and complexity of the drilling data. 
 

OS N2 D3 (%) 
CircHL 1.6 9.5 
CleanDN 0.7 34.3 
CleanUP 1.5 66.6 
DrlRot 0.1 4.1 
DrlSld 4.7 62 
MakeCN 0.2 6.1 
MoveDN 8.3 48 
MoveUP 4.2 28.9 
WashDN 1.5 49.0 
WashUP 1.3 66.0 

Table 2: Measures of data complexity N2 and D3 

3 Selection of classifiers for the best performance 

Following the above data analysis, reference to one of the most comprehensive review 
in [6] and the authors’ experience with complex data classification, eight machine 
learning algorithms were selected. These include: 1) k-Nearest-Neighbour (kNN), 2) 
Support Vector Machines (SVM), 3) Linear Discriminant Analysis (LDA) 4) Echo 
State Network (ESN), 5) Random Forest (RF), 6) AdaBoostM2, 7) RusBoost and 8) 
Subspace.  Each of the algorithms were evaluated using micro-averaged and macro-
averaged F-measures [2]; together with the Matthews Correlation Coefficient (MCC) 
[7] for their respective overall performances. Correct Classification Rates (CCR) were 
adopted for the assessment of individual OSs. The larger the F-measure is the higher 
the classification rate. Micro-average F-measure gives equal weights to each label and 
tends to be dominated by the classifier's performance on common classes.  Macro-
average F-measure gives equal weights to each class regardless of its frequency. It is 
influenced more by the classifier's performance on rare classes. Both measurement 
scores are used to analyze how well classifiers perform under common and rare 
classes. MCC summarizes the confusion matrix into a single value and is regarded as 
a good measure for problems with unbalanced classes. It returns a value between -1 
and 1, where 1 is a perfect prediction, 0 no better than a random prediction and -1 
indicates a total disagreement between prediction and observation. The selected eight 
classifiers were trained using sensor measurements with given OS at Well140. Their 
testing was subsequently performed on two other Wells of the same Rig (Well80 and 
Well85). Only Well80 is presented in this instance.  

Ten sensor measurement were considered: 1) Block Position; 2) Bit Depth; 3) Hole 
Depth; 4) Weight on Bit; 5) Mud Flow; 6) Pump Pressure; 7) Rate of Penetration; 8) 
Rotary Torque; 9) Hook Load and;10) Rotary Speed. Six additional features were also 
considered: 1) Hole Depth - Bit Depth; 2) Hole Depth + Block Position; 3) Bit Depth 
+ Block Position; 4) Rotary Torque * Rotary Speed; 5) Pump Pressure * Mud Flow 
and; 6) Rate of Penetration * Weight on Bit. Three experimental scenarios were 
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designed according to various utilizations of the amount of labeled data from Well140 
for classifiers training: 1) 100% of data are considered for training (All); 2) 30% of 
data are considered for training using uniform sampling without replacement 
(30_UWR) and; 3) 30% of data are considered for training using a hybrid sampling 
(30_HS). These scenarios were considered to assess the possibility of reducing 
training sets without losing in the classification accuracy on the testing sets. The 
investigation on the sensitivity of the classifiers to various sub-sampled sets and the 
comparison of confidence intervals under scenarios 2) and 3) were performed using 
ten different Monte Carlo samples which were respectively drawn for each sampling 
scheme. Each algorithm was fine-tuned in order to achieve best performance. Table 3 
shows the algorithms performance for Well80. Three algorithms such as RF, 
AdaBoostM2 and RUSBoost show best performance for the different training sets. 
They achieved similar performance according to all three assessment criteria: F1 and 
F2 measures reached values above 80% and 55% respectively; while MCC was above 
0.7 for all these algorithms. The kNN and SubSpace algorithms consistently 
performed poorly Table 3 shows that the volume of the training datasets can be 
reduced by a third without significantly reducing the classifiers performances. 
 

Method ALL      
(%F1,%F2,MCC) 

30_UWR 
 (%F1,%F2,MCC) 

30_HS  
(%F1,%F2,MCC) 

kNN (56,35.2,0.42) (66.3±3.2,36.8±1.1, 0.53±0.05) (50±2.6,33.6±0.7, 0.37±0.02) 
SVM (71.2,47.2,0.58) (73.7±0.6,46.9±0.4, 0.62±0.008) (70.6±2.4,45.8±1.0, 0.58±0.03) 
LDA (70.4,37.2,0.58) (71.2±0.5,38.4±1.2, 0.59±0.006) (69.9±0.2,37±0.4, 0.56±0.002) 
ESN (67.4,34.5,0.56)  (58.8±7,33±1.7, 0.48±0.06)  (66.2±2.3,36.3±2, 0.53±0.03) 
RF (84.1,57.1,0.77) (85.2±0.3,57.4±0.5, 0.79±0.006) (83.5±0.5,57.5±1.6, 0.74±0.01) 
AdaBoostM2 (85.2,61.4,0.77) (85.3±0.6,60.2±1.9, 0.77±0.01) (85±0.4,60.5±0.6, 0.76±0.005) 
RUSBoost (85.3,61.6,0.76) (84.2±0.5,59.5±1.1, 0.75±0.005) (83.1±1.7,57.9±2.3, 0.73±0.03) 
SubSpace (65.1,22.3,0.61) (64.6±1.4,21.1±2.7, 0.59±0.02) (56.4±0.7,20.8±1.1, 0.44±0.01) 

Table 3: Comparison of algorithms, Well 80 
 
Uniform sampling Without Replacements (30_UWR) led to good overall 

performances for Well80. Though HS produced more balanced classes for 
classification, it did not preserve data structure. DrlRot, DrlSld and MakeCN 
operational states should not be misclassified, since they are critical for decision-
making during normal operations. However, the accurate classification of 
WashUP/WashDN, CleanUP/CleanDN or MoveUP/MoveDN could become more 
important, when critical situations. As shown in Figure 2 below, three classifiers 
fulfill best results. These are RF, AdaBoostM2 and RUSBoost. These nominated 
classifiers achieved high CCRs which are greater than 90% in the majority of cases of 
the critically important states under normal conditions such as DrlRot, DrlSld and 
MakeCN. 
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          Fig. 2: Classification results for algorithms selection 

4 Conclusions  

A thorough benchmarking study has been achieved for the selection of the most 
performing classifiers for the detection of operational states in drilling operations. 
Strategies were put in place to filter out the less performing classifiers and maintain 
those which efficiently coped with complex drilling operation data and multiple states 
classification. Prior knowledge on the geophysical strata of the operating rig can 
potentially assist on further inferences for improving the identified performing 
classifiers. RF, AdaBoostM2 and RUSBoost were found highly reliable for achieving 
real-time automated detection of operational drilling states. They are proposed as the 
best classifiers for building the next generation decision-support information systems 
for achieving safer drilling operations in industrial rigs.   
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Abstract. In this work, three carbonation depth predicting models using decision 

tree approach are developed. Carbonation, in urban areas is often a reason for 

reinforcement steel corrosion that causes premature degradation, loss of 

serviceability and safety of reinforced concrete structures. The adopted decision 

trees are regression tree, bagged ensemble and reduced bagged ensemble 

regression tree. The evaluation of the predictions performance of the developed 

models reveals that all the three models perform reasonably well. Among them, 

reduced bagged ensemble regression tree showed the highest prediction and 

generalization capability.   

1 Introduction 

Corrosion of reinforcement steel in concrete induced by carbonation is the foremost 

cause of premature degradation, loss of serviceability and safety of reinforced 

concrete structures [1, 2]. Carbonation of concrete is a natural physicochemical 

process caused by the penetration of carbon dioxide from the surrounding 

environment into  the  concrete  through  pores  in  the matrix where the carbon 

dioxide  reacts  with  hydrated  cement. Calcium hydroxide (Ca(OH)2)  in  contact  

with  carbon  dioxide  (CO2) forms  calcium  carbonate  (CaCO3).  This chemical 

reaction reduces the alkalinity of the pore fluid from pH value around 13 to pH value 

of below 9. Consequently, the passive oxide layer steel reinforcement is destroyed 

and eventually corrosion of the steel bars will be initiated [2, 3]. 

 Concrete carbonation depth at a given time in steady state conditions can 

reasonably be estimated using Eq. (1) for usual life-time of concrete structures. This 

equation is based on Fick’s second law of diffusion and it is well known [2]. 

x = C√t   (1) 

where, x is the depth of carbonation at time t [mm] , C is coefficient of carbonation 

[mm/d
0.5

], and t is the duration of carbonation [d].  

 Coefficient of carbonation is a decisive factor in determining carbonation depth. 

It is analyzed either by an accelerated carbonation test or by measuring the 

development of the carbonation depth from an existing concrete structure. Since 

carbonation is a slow process, it is usually investigated by performing accelerated test 

with a higher CO2 concentration in a controlled environment at the age of 28 days [4]. 

Then, the measured carbonation depth is used to calculate the equivalent carbonation 

coefficient using Eq. (1). Carbonation coefficient is mainly controlled by diffusion of 

CO2 into the concrete pore system. CO2 diffusion through concrete depends on several 

factors such as CO2 concentration, environmental condition, and concrete 

characteristics. Therefore, carbonation coefficient may significantly vary from one 
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concrete structure to another depending on environment and microstructural 

parameters which are linked with concrete composition and type of materials used.  

 Developing analytical carbonation depth prediction model is a challenging task 

since it is a function of many parameters that are complex to describe mathematically. 

Hence, building a model that can learn from readily available real data using a 

machine learning algorithms is a better alternative. Even though this approach is 

becoming a common practice in various engineering fields, its application in concrete 

durability is yet limited. Among several machine learning techniques, only artificial 

neural network is widely used in this research area, for instance, chloride penetration 

in concrete [5] and hygrothermal forecasting in thick-walled concrete [6].  

 This paper presents a machine learning method, namely a decision tree, for 

prediction of concrete carbonation depth.    

2 Data understanding and preparation 

2.1 Data understanding  

Experimental data obtained from [7] is used to develop a model for predicting the 

depth of carbonation. This data were prepared for Finnish DuraInt-project. The 

project was carried out in cooperation between Aalto University and VTT Technical 

Research Centre of Finland. The data consists of concrete mixture ingredients and 

fresh and hardened properties of 46 specimens. Carbonation depths for half of the 

concrete specimen were conducted at the age of 28 days and the remaining half at the 

age of 56 days. The accelerated carbonation tests were performed by applying CO2 of 

1% in a controlled environment (temperature 21°C and relative humidity 60%) in 

accordance with EN 13295. The data contain both numerical and categorical inputs. 

In this work, only data of the concrete mixture ingredients and the carbonation depth 

is used, which is in total 15 features. These are: cement type, water to binding ratio 

(w/b), cement, blast-furnace slag (BFS), fly ash (FA), total effective water, total 

aggregate, aggregate < 0.125mm, aggregate < 0.25mm, aggregate < 4mm, product 

name of plasticizer, plasticizer, product name of air-entraining agent, air-entraining 

agent, carbonation period and carbonation depth.  

2.2 Data preparation   

An input matrix of [46x15] predictor values from concrete mixture parameters was 

arranged. Each column of an input matrix represents one variable, and each row 

represents one observation. A numeric column vector, carbonation depth, with the 

same number of rows as input matrix was prepared and assigned as a target. Each 

entry in output vector is the response to the data in the corresponding row of the input 

matrix. Since the environmental conditions for all test specimens were identical, this 

parameter is not included in the predictor matrix. The dataset were used for both 

training and testing datasets with 10-fold cross-validation. 
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Fig. 1: Example of a dataset and the corresponding decision tree. 

 

3 Modeling carbonation depth using decision trees 

Decision tree is a nonparametric hierarchical data structure which implements the 

divide-and-conquer strategy. It is composed of internal decision nodes and terminal 

leaves as illustrated in Figure 1. The left panel plots the data points and partitions and 

the right panel shows the corresponding decision tree structure. Each decision node 

implements a test function with discrete outcomes labeling the branches. Given an 

input, at each node, a test is applied and one of the branches will be chosen depending 

on the outcome. This process starts at the root and is repeated recursively until a leaf 

node is hit, at which point the value written in the leaf constitutes the output [8]. 

 In this work, three different decision trees are used to predict concrete 

carbonation depth. These are regression tree, ensemble bagged regression tree and 

bagged regression tree after features reduced. All the trees were developed using 

Matlab. 

3.1 Regression tree  

The structure of the regression tree is the same as that of the tree presented in Figure 

1. The only difference is the leaves which contain real numbers instead of class labels. 

The regression tree is trained over the training dataset. The performance of the 

developed tree is measured by mean square error (MSE) and mean absolute error 

(MAE) on both training and testing dataset. MSE, the mean square error between 

predicted output (�̂�𝑖) and target (𝑌𝑖), is the most common measure of accuracy, Eq. 

(2). The MAE of Eq. (3) is the more intuitive measure and is less sensitive to outliers. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑌𝑖 − �̂�𝑖)

2𝑁
𝑖=1   (2) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑖 − �̂�𝑖|

𝑁
𝑖=1   (3) 

where �̂�𝑖 is the predicted output value, 𝑌𝑖  is the measured target value, and 𝑁 is the 

number of observations. 

 The resulting MSE values for training and test dataset were 0.0416 and 4.3108, 

respectively. Significant difference in MAE of training and testing dataset is also 

observed. All these show that the developed regression tree generalized the test data 

poorly because it overfitted the training data as seen in the regression plot, Figure 2. 
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3.2 Bagged ensemble regression tree  

Bagging is one of the most effective methods that can be used to improve the 

predictive performance of a tree model by reducing the variance associated with 

prediction. This technique draws multiple bootstrap samples from the training dataset 

and generates multiple predictor trees, and then, the results are combined by 

averaging to obtain the overall prediction [9, 10]. 

 An ensemble of bagged regression tree was developed with an initial default 

tree and leaf size. The performance evaluation indicates that ensemble of bagged 

regression tree has a high generalization capacity than the regression tree presented in 

Section 3.1. The MSE of the training and testing dataset was 0.9701 and 2.7223. 

Regression plot of predicted vs measured carbonation depth on training dataset for 

bagged ensemble regression tree is shown in Figure 2.  

 

Fig. 2: Regression plot of predicted vs measured carbonation depth on training dataset for 
regression tree (left) and bagged ensemble regression tree (right). 

 

 
Fig. 3a: Out-of-bag mean square error vs number of grown trees (left). 3b: Relative importance 

of the input variables of the bagged ensemble regression tree (right). 
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3.3 Reduced bagged ensemble regression tree 

In order to minimize the prediction error of the bagged ensemble, we compute 

predictions for trees with different leaf sizes on its out-of-bag observations, Figure 3a.  

It can be observed that the out-of-bag error decreases well with the number of grown 

trees for leaf size of five. The relative importance of the input variables of the bagged 

ensemble regression tree is illustrated in Figure 3b. It can be clearly seen that the 

carbonation period and w/b are the foremost influential predictors for this dataset. 

Next to these variables, amount and types of cement, plasticizer and the distribution 

of aggregate play considerable role in predicting the carbonation depth for this 

dataset. This is a useful finding because plasticizer and aggregate distribution were 

overlooked in several existing analytical models.   

 After determining good predictors and an ensemble size from the out-of-bag 

error, a new bagged ensemble regression tree was constructed to enhance its 

performance further. In this case, the optimal number of leaf and trees was chosen as 

5 and 150, respectively. Two parameters, BFS and FA, were reduced out of the total 

15 features since they are unimportant to predict the carbonation depth in this dataset. 

The MSE of training and testing dataset of this model was 0.9536 and 2.2990. Figure 

4 illustrate the predicted and the measured carbonation depth with the predicted error.  

3.4 Performance comparison 

An average of five round statistical performance measurements of all the carbonation 

prediction models are listed in Table 1. As shown in this table, reduced ensemble 

bagged regression tree is statistically outperformed all the other models for this 

dataset. The MAE values of this model for training and test dataset are 0.4755 and 

0.5261, respectively. These indicate that this model reasonably fits the measured data 

and has relatively better generalization capability. All the performance measurements 

of the models are valid only for the considered specific dataset. If a different dataset is 

employed, the performance may differ noticeably. Generally, this study revealed the 

applicability of decision tree based models to predict concrete carbonation depth. As 

part of future work, the model will be evaluated using more experimental data. 

 

Fig. 4: Measured and predicted carbonation depth using bagged ensemble regression tree 

with the prediction error. 
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4 Conclusions 

Three concrete carbonation depth prediction models based on decision tree method 

are presented. To develop the models, three different decision trees were adopted. 

They are regression tree, bagged ensemble regression tree and reduced bagged 

ensemble regression tree. The models prediction capacity was examined based on 

mean square errors and mean absolute error. Models developed using bagged 

ensemble with and without features extraction predict the carbonation depth with 

reasonably low error. The model developed using the former method has superior 

performance with relatively better generalization capability. This confirms the 

advantage of feature and ensemble size selection in improving performance. 

Furthermore, the bagged ensemble regression tree identified important variables that 

influenced the carbonation rate which was not considered in the existing analytical 

models. The models have potential to be part of a service life management system. 
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Models 
MSE MAE 

Train Test Train Test 

Regression tree 0.0416 4.3108 0.0740 1.3437 

Bagged ensemble regression tree 0.9701 2.7223 0.4927 0.6283 

Reduced bagged ensemble regression tree 0.9536 2.2990 0.4755 0.5261 

Table 1: Performance comparison of carbonation depth prediction models. 
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Powered-Two-Wheeler safety critical events

recognition using a mixture model with
quadratic logistic proportions
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Abstract. This paper presents a statistical methodology that uses both
acceleration and angular velocity signals to detect critical safety events
for Powered Two Wheelers (PTW). The problem of recognition of crit-
ical events has been performed towards two steps: (1) the feature ex-
traction step, where the multidimensional time trajectories of accelerome-
ter/gyroscope data were modeled and segmented by using a specific mix-
ture model with quadratic logistic proportions; (2) the classification step,
which consists in using the k-nearest neighbor (k-NN) algorithm in order
to assign each trajectory characterized by its extracted features to one of
the three classes namely Fall, near Fall and Naturalistic riding. The re-
sults show the ability of the proposed methodology to detect critical safety
events for Powered Two Wheelers.

1 Introduction

In recent years, road safety has become a priority for the governments of Eu-
ropean countries. While statistics show a substantial decline in the number of
fatalities on the road for four-wheeled vehicles, in the category of Powered Two-
Wheelers (PTWs), the statistics show only a minor reduction with a constant
decrease (approximately 2%). In France, PTW traffic represents approximately
2% of the overall traffic flow; however, it represents 40% of all serious injuries
and approximately 20% of all deaths.

Driver behavior and driver errors are major causes of vehicular accidents.
Therefore, observing and understanding driver behavior has attracted much at-
tention from researchers. Many studies have been made to determine what fac-
tors are associated with critical events that occur before crashes. One method
among these tools is naturalistic driving/riding studies (NDS/NRS). Thus, sev-
eral vehicles are equipped with embedded sensors. Each participant drives
his/her vehicle for an extended period of time. In this way, NRS data can pro-
vide knowledge about rider behavior, i.e., how the rider interacts with her/his
vehicle. Additionally, by identifying critical events, useful contextual informa-
tion can be provided to intelligent transportation systems (ITS) developed for
PTWs, thereby improving their effectiveness. An event is defined as an undesir-
able riding event, such as hard braking, lane changing and sharp turning.

This paper focuses on automatic incident detection based on the same idea
as [1]. The authors applied a robust outlier detection methodology based on the
Mahalanobis distance to detect critical incidents. As this method is a threshold
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based method, the main drawback of such approaches is the difficulty of deter-
mining the thresholds of regular and irregular riding behavior. In this work our
aim is to distinguish between the regular and irregular riding behavior and to
detect the switching time between these two profiles. In this paper, the problem
of incident detection is performed via two steps: (1) the segmentation step,
this step consists in segmenting in an unsupervised context the multidimensional
time series of accelerometer/gyroscope data. Therefore, each segment is modeled
by a regression model and logistic functions are used to model the transitions
between segments. (2) the classification step, this step consists in classifying
segments by using the k-nearest neighbor (k-NN) algorithm, each segment being
characterized by its mean and its variance. This approach was applied on real
experiments conducted by different subjects driving instrumented PTWs and
its performance was assessed by performing comparison with another algorithm,
the standard Multiple Hidden Markov Model (MHMM) [2]. To start with, the
next section is dedicated to the proposed statistical model for the PTW events
detection problem.

2 PTW safety critical events detection model

2.1 PTW experimental data

In this work we have used the data coming from 3D Inertial Measurement Unit
(accelerometers/ gyroscopes) mounted on the PTW. In order to evaluate the reli-
ability and the robustness of the proposed methodology, three kinds of scenarios
were conducted: (i) Fall scenarios (F): Five falling scenarios were selected
and replayed by a stuntman. A set of 8 trajectories were performed by the
stuntman including five scenarios known: Standstill fall, Fall in a curve, Fall on
a slippery straight road section, Fall with leaning of the motorcycle ”intentional
maneuver” and Fall in a roundabout. For more details on this experimentation
the reader is invited to see [3]. (ii) Near fall scenarios (Nf): A set of 10
trajectories were performed during extreme cases of riding behavior including
aggressive riding such harsh braking, accelerating and swerving. These extreme
manoeuvres were carried out on track by a professional rider. The purpose of
performing these manoeuvres is to study the robustness of the proposed algo-
rithm in such limit handling behavior. (iii) Naturalistic riding scenarios
(N): This experiment was performed in urban area near to the city of Paris, un-
der different weather conditions (sunny, rainy and foggy). 11 trajectories were
rode by five riders with different profiles and riding experiences. The partici-
pants were given an instruction to drive like they usually do. For more details
on this experimentation the reader is invited to see [4].

The signals have been collected with a sampling frequency of 1 Khz. A
filtering task was carried out by using the Wavelet Filter (WF) with a six level
of wavelet decomposition and Daubechies mother wavelet (Db20) [4].

The collected discrete observations constitute a sample of multivariate tra-
jectories:

D = {xi}i=1:N , (1)
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where N is the total number of trajectories. Each trajectory xi = {xit}t∈Ti

is supposed to be observed at the time vector Ti = {ti1, . . . , tiTi}, where Ti

represents the trajectory length. In this study, only the data recorded from the
3D-accelerometer/gyroscope were used. Therefore, xit is defined as:

xit = {ax, ay, az, rx, ry, rz} ∈ R6,

where, ax, ay and az are the longitudinal, the lateral and the vertical accelera-
tions respectively. And rx ,ry and rz are the roll, the pitch and the yaw angular
velocities respectively.

2.2 A Gaussian mixture model with quadratic logistic proportions

This section aims at describing the model that will be used for accelerome-
ter/gyroscope signals segmentation. For this purpose a specific mixture model
with time varying proportions is formulated, which is a specific case of the re-
gression model with hidden logistic process (RHLP) [5].

2.2.1 Model definition

The signal segmentation model used in this work assumes that each observation
xit (t = 1, . . . , Ti) of the trajectory xi (i = 1, . . . , N) is distributed according to
the following mixture of two Gaussian distributions:

p(xit; θ) = π(t;w)N (xit;β1,Σ1) + (1− π(t;w))N (xit;β2,Σ2) (2)

where N (.;β,Σ) is the Gaussian probability density function with mean β and
covariance matrix Σ. The parameters (β�,Σ�)�=1,2 are the means and covari-
ance matrices of the Gaussian components, and π(t;w) is the first component
proportion defined by:

π(t;w) =
exp (w0 + w1t+ w2t

2)

1 + exp (w0 + w1t+ w2t2)
, (3)

whose parameter is w = (w0, w1, w2) ∈ R3. These quadratic mixture propor-
tions allow a specific segmentation of the trajectories. They are particularly
suitable for segmentation problems with reswitching transitions, especially en-
countered in the case of riding behaviour.

The parameter θ = {w,β1,β2,Σ1,Σ2} of this model is estimated by max-
imizing the log-likelihood through the Expectation-Maximization algorithm, as
detailed in [5]. After this step, a set of features is calculated based on the pa-
rameter θ estimated for each trajectory. The set of features F is calculated as
follow:

F = {β1,β2, ‖β1 − β2‖, diag(Σ1), diag(Σ2), ‖diag(Σ1 −Σ2)‖}
where ‖.‖ is the norm associated the Euclidean distance, and diag(Σ) is the
vector of the diagonal elements of Σ. It should be noticed that the segments

423

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



were rearranged according to temporal order which corresponds to the real riding
activity. This set of features is used as learning database for classifying segments
by using the k-nearest neighbor (k-NN) algorithm. By varying the value k
between 1 and 10, we selected the value k = 3. The aim of this step is to judge
if the transition between two contiguous segments is a consequence of an event
occurring, which can bee seen as an important change between the mean and
the variance from one segment to another.

3 Results and discussion

As mentioned above, the PTW events detection methodology is evaluated on
a real database. This database is constituted by 29 trajectories in which we
have 8 falling trajectories representing 5 scenarios, 10 near-falling trajectories
representing 6 scenarios and 11 naturalistic riding trajectories.

In this section we present the results of the segmentation of different trajec-
tories using the proposed approach GMMQLP (Gaussian Mixture Model with
Quadratic Logistic Proportions) and MHMM. As we can see on the example
presented on Figure 1, the proposed approach performs well the data segmen-
tation compared to the MHMM. In the particular case of fall scenario, it can
be clearly observed that the data is correctly segmented by the GMMQLP al-
gorithm. We can also notice that the data is still correctly segmented by the
MHMM algorithm with some “pseudo” transitions, Figure 1(g). In the case of
near fall scenario, the same observation can be made for the two algorithms,
with more “pseudo” transitions in the case of the MHMM algorithm. In the
case of naturalistic riding scenario, the GMMQLP algorithm does not segment
the data, which is not the case of the MHMM algorithm where many “pseudo”
transitions can be observed, this result can be explained by the flexibility of the
logistic process that govern the switching from one segment to another.

The Table 1 represents the obtained results in terms of correct segmentation
rate for each scenario. These results are obtained by matching the segmentation
results to the true labels (given by an expert). We can notice that the GMMQLP
performs better segmentation than the MHMM. We have to recall that the aim

Correct segmentation rate

F Nf N Global correct

trajectories trajectories trajectories segmentation rate

GMMQLP(%) 98.77 95.37 95.72 96.62

MHMM(%) 92.50 85.81 76.93 85.08

Table 1: Correct segmentation rate obtained with GMMQLP and MHMM algo-
rithms.

of this study is to develop an automatic incident detection approach. This
approach aims is to distinguish between the regular and irregular riding behavior
and to classify the segment into three classes (fall, near fall or naturalistic) riding

424

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



0 1 2 3 4
x 10

4

−5

0

5

R
a
w

 d
a
ta

Time (ms)

Fall

(a)

0 1 2 3 4
x 10

4

−5

0

5

R
a
w

 d
a
ta

Time (ms)

Near fall

(b)

0 1 2 3 4
x 10

5

−5

0

5

R
a
w

 d
a
ta

Time (ms)

Naturalistic

 

 

(c)

0 1 2 3 4
x 10

4

0

0.5

1

1.5

G
M

M
Q

L
P

 p
ro

b
a
b
il
it
y

Time (ms)

(d)

0 1 2 3 4
x 10

4

0

0.5

1

1.5

G
M

M
Q

L
P

 p
ro

b
a
b
il
it
y

Time (ms)

(e)

0 1 2 3 4
x 10

5

0

0.5

1

1.5

G
M

M
Q

L
P

 p
ro

b
a
b
il
it
y

Time (ms)

(f)

0 1 2 3 4
x 10

4

0

0.5

1

1.5

M
H

M
M

 p
ro

b
a
b
il
it
y

Time (ms)

(g)

0 1 2 3 4
x 10

4

0

0.5

1

1.5

M
H

M
M

 p
ro

b
a
b
il
it
y

Time (ms)

(h)

0 1 2 3 4
x 10

5

0

0.5

1

1.5

M
H

M
M

 p
ro

b
a
b
il
it
y

Time (ms)

(i)

Figure 1: Results obtained by applying the proposed GMMQLP model (middle)
and the MHMM approach (bottom) on the acceleration time series measured
during fall, near fall and naturalistic riding cases (from left to right). In a, b and
c the red, blue and black signal represent az, ax and ay, respectively. In d, e, f,
g, h the estimated probabilities obtained with the two approaches are presented.
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Predicted classes

F Nf N

F (%) 100 0 0
Real Nf (%) 0 90 10
classes N (%) 0 0 100

Table 2: Global confusion matrix for the
GMMQLP algorithm.

Predicted classes

F Nf N

F (%) 100 0 0
Real Nf (%) 0 70 30
classes N (%) 0 0 100

Table 3: Global confusion matrix for the
MHMM algorithm.

events. This classification task is performed by the k-nearest neighbor (k-NN)
algorithm on the database F , each segment being characterized by its mean and
its variance, as stated before. The global confusion matrices for the GMMQLP
and the MHMM algorithms are given in Table 2 and Table 3. AS expected
we can observe that the confusions occur especially for near fall scenarios, less
for GMMQLP algorithm than for MHMM algorithm. These confusions can
be explained by the fact that in theses situations the features extracted from
GMMQLP algorithm F are more discriminative than the features extracted
from the MHMM algorithm.

4 Conclusion and Further Work

In this paper we presented a new method for PTW events detection by using a
specific mixture model with quadratic logistic functions. Among data collected
from an instrumented motorcycle we have only used the 3D Inertial Measure-
ment Unit (accelerometers/ gyroscopes) as input data. The obtained results
show the effectiveness of the proposed algorithm to solve such problem. The in-
creasing computational capabilities of on-board computers makes the proposed
methodology suitable for realtime events detection problem, this idea will be
investigated as a future work.
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Abstract.

Activity recognition is a challenging computer vision problem with count-
less applications. Here we present a real time activity recognition system
using deep learning of local motion feature representations. Our approach
learns to directly extract energy based motion features from video blocks.
We implement the system on a distributed computing architecture and
evaluate its performance on the iCub humanoid robot. We demonstrate
real time performance using GPUs, paving the way for wide deployment
of activity recognition systems in real world scenarios.

1 Introduction

Activity recognition is of primary interest in various applications such as video
surveillance, medical care, human-computer interaction etc. [1, 2]. In the recent
past, there has been an increasing interest in activity analysis from areas such
as elderly care and health monitoring of patients. Traditionally, patients are
required to wear a variety of sensors to identify their daily live activities [3,
4]. Vision based recognition schemes come in handy in such applications as
they allow the use of passive, non-contact sensors. This, however, requires a
system that not only learns and recognizes the activities in new scenarios but also
provides real-time performance. In this work we develop a end-to-end learning
based activity recognition system that learns from a minimal data set for a
given scenario providing high speed and real-time recognition performance. We
integrate and demonstrate the system on a robotic platform.

Using local motion features for activity recognition is a popular approach
employed in many of the previous works [5, 6, 7, 8]. Approaches like [8] use
traditional handcrafted features like HOG3D, HOF etc., as local motion fea-
tures whereas so-called energy models [7, 6, 5] learn motion features from the
input data. In traditional energy models, motion, or the spatial transformation
between two frames of a sequence, is represented as the sum of squared quadra-
ture Fourier or Gabor coefficients across multiple frequencies and orientations
[5]. Summing over squared quadrature pairs also induces invariance to content,
allowing the model to represent pure motion. In [6] it has been shown that

∗This work was supported in part by the German Federal Ministry of Education and Re-
search (BMBF) in projects 01GQ084(0/1) (BFNT Frankfurt), by an NSERC Discovery grant
and by a Google faculty research award. JT was supported by the Quandt foundation.
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learning the spatial transformations and invariance can be viewed as two inde-
pendent aspects of learning. Based on that view they introduced a single layered
autoencoder based model named synchrony autoencoder(SAE) for learning mo-
tion representations. In this work we use the SAE for learning motion features
exploiting its training efficiency. In the next section we briefly explain the SAE
model followed by details on the real time activity recognition system in later
sections.

2 Learning motion features

In [6] it is shown that the detection of a spatial transformation can be viewed
as the detection of synchrony between the image sequence and a sequence of
features undergoing the transformation. This is done in the SAE model by
allowing for multiplicative (gating) interactions between filter responses applied
to the frames in a video. The following is a brief description of the SAE model
for sequences.

Let ~X ∈ RN be the concatenation of T vectorized frames ~xt ∈ RM , t =
1, . . . , T . Let Wx ∈ RQ×N denote a matrix containing Q feature vectors ~W x

q ∈
RN stacked row-wise. Each feature is composed of individual frame features
~wx
qt ∈ RM each of which spans one frame ~xt from the input sequence. The filter

responses, or “factors”, are defined as ~FX = Wx ~X. A simple representation of
motion can then be defined as

Hq = σ((F x
q )2), (1)

Learning in an autoencoder is generally achieved by minimizing the sum of a
reconstruction cost and a regularization term, using gradient descent. In this
work we use contractive regularization [9]. The cost function for the SAE model
together with the regularization is given by

JC = ‖( ~X − ~̂X)‖2 + λ‖Je( ~X)‖2E , (2)

where ‖Je(X)‖2E denotes the Frobenius norm of the Jacobian of the hidden units
with respect to the inputs [9], which for σ defined as logistic sigmoid is given by

‖Je( ~X)|2E =
∑
j

(Hj(1−Hj))
2(F x

j )2
∑
i

(W x
ij)

2. (3)

The hyper-parameter λ is set via a grid search. The SAE model is used as the
feature extraction module of the activity recognition pipeline explained in the
following section.

3 Activity pipeline

Our activity analysis pipeline is based on the bag-of-words approach used in
[5, 6]. The pipeline consists of a feature extraction module followed by K-means
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Fig. 1: Block diagram of real time activity recognition system on iCub.

vector quantization and finally a χ2 kernel SVM for classification. The model
described in Section 2 is used for motion feature extraction. The model is trained
on PCA-whitened input patches of size 10×16×16 (time×space×space). The
total number of training samples is 200, 000. The size of the latent hidden layer
representation from the model is fixed at 300.

It has been observed that spatially combining local features learned from
smaller input patches leads to better representation than features learned on
larger patches [5, 10]. In this regard, for computing a local feature describing
a larger region of input video, sub blocks of the same size as the patch size are
cropped from ”super blocks” of size 14×20×20 [5, 6]. The sub blocks are cropped
with a stride of 4 on each axis giving 8 sub blocks per super block. The feature
responses of sub blocks are concatenated and dimensionally reduced using PCA
to form the local feature. On these local features a K-means layer with 3000
centers is learned with 500, 000 samples for training. This gives a dictionary
of 3000 words where each word can be thought of as a motion pattern. The
pipeline can be viewed as layer-wise trained deep neural network.

For inference the super-blocks are extracted densely from the input video with
a 50% overlap. The resulting local features, from convolution operation, from the
entire video are quantized using the learned K-means vocabulary resulting in a
3000 dimensional histogram or bag-of-words feature vector. The histograms from
the training videos are used for training the SVM classifier. During inference the
histogram computed for a given test sequence is classified into a activity label.

4 Real-time recognition system

In this section we describe the real-time implementation of the activity recog-
nition system. The overall architecture of the system is as shown in Figure
1. platform. The individual modules shown in Figure 1 are run on different
machines that are connected through an open-source platform called YARP (a
robotic platform). We use a C++ implementation that uses OpenCV (computer
vision library) and GPUs (Graphical Processing Units) for fast computations to
cater to the real-time performance. We explain in detail the individual modules
in the rest of this section.

Camera reader: This module handles the video stream from the cameras of
the iCub humanoid robot [11]. The camera reader receives a continuous stream
of frames from the cameras on the robot, bundles them into groups of 14 and
then sends them to the block processor module. There is an overlap of 7 frames
netween subsequent video blocks.
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Block processor: This module implements the activity recognition pipeline
explained in Section 3 which computes a histogram or motion descriptor (output
of the K-means quantization step) given a video block. The input to the block
processor are video blocks of size 14 frames from the camera reader. The com-
puted histogram for each input video block is passed on to the classifier module.
Our implementation has the ability to parallelize block processing by running
multiple instances of block processor on multiple GPUs.

Classifier: The module handles the output histograms from the block pro-
cessor by maintaining a first-in-first-out buffer of size 10 in our case. For every
new incoming histogram the module updates the buffer and predicts an action
label by summing over histograms in the buffer i.e., over past 10 blocks ( 4 secs of
video) unlike the offline case that uses the entire sequence to predict. The label
information can be further used in detection and tracking of the user involved
by controlling the gaze of the humanoid robot (see dotted lines in Fig. 1). We
plan to do this as part of our future work.

4.1 Implementation details

Hardware configuration and speed General-purpose computing on GPUs
has gained popularity in recent years especially in the field of computer vision
for speeding up the algorithms that involve intense computations on images. We
use GPUs for the block processor module. Our current implementation ran on a
system with 2.6 GHz CPU, 12 GB RAM and GTX 480 NVIDIA GPU devices.
We observed that the time taken for processing one video block of 14 frames
varied from 350 to 450 milliseconds that corresponds to an overall processing
speed of 15 to 20 frames per second fps, considering overlap of 7 frames between
the video blocks. When using four GPUs the speed further increased to 42 fps
which higher than what is considered is as real time performance.

YARP: a robotic architecture: We develop the system on a distributed
architecture to share the load onto different machines. We modularize the algo-
rithm into different parts that are simultaneously run and coordinated through
YARP. YARP (Yet Another Robot Platform) is a robot software architecture
that can run a collection of programs on different machines and lets them com-
municate in a peer-to-peer way [12]. In our work we run the camera reader, block
processor, classifier and Display modules on different cores/machines.

iCub robot: iCub is an open-system robotic platform that is generally con-
sidered an interesting experimental platform for analyzing cognitive, visual and
sensorimotor behaviors. iCub is designed with physical dimensions resembling a
3 year old child. The head in particular has two dragon fly cameras with VGA
resolution that are mounted as eyes used for video capture in our system. The
eyes can produce images at resolution of 320× 240 at a rate of ∼ 20 fps .

5 Dataset and results

As mentioned in the previous section we recorded a dataset on iCub robotic
platform for parameter training and testing of our system. The dataset includes
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(a) Boxing (b) Clapping (c) Door-open-close (d) Drinking

(e) Waving-double (f) Waving-single (g) Sit-Stand (h) Walking

Fig. 2: Example snapshots of different actions from the collected dataset.

Boxing clapping DOC drinking HWD HWS sitstand walking
Boxing 46.6/49.8 26.6/9.6 0./0.4 0./7.2 0./1.2 20./15.4 0./10.6 6.6/5.5

clapping 11.1/1.6 61.1/52.7 0./0. 5.5/20.8 0./1.11 5.5/10.8 16.6/8.3 0./4.4
DOC 0./0. 0./0. 100./91.4 0./8.5 0./0. 0./0. 0./0. 0./0.

drinking 0./0. 0./0. 0./2.7 100./95.8 0./0. 0./0.9 0./0. 0./0.5
HWD 0./0. 11.1/6.5 0./0. 0./0.3 50./75.6 22.2/17.5 16.6/0. 0./0.
HWS 0./0. 0./0. 0./0. 0./11.7 0./0. 80./88.2 20./0. 0./0.

sitstand 0./0. 0./0. 0./0. 11.9/47.8 0./0. 0./0. 88.1/52.1 0./0.
walking 0./0. 0./0. 0./0.4 0./6.2 0./0. 0./0. 0./0. 100./93.3

Table 1: Confusion matrix of classification experiments. Offline test/Realtime
test.

videos from 8 different people P0 to P7 performing 8 different actions. The ac-
tions are namely ”clapping”, ”door open close”(DOC), ”drinking”, ”hand waving
double”(HWD), ”hand waving single”(HWS), ”sit stand”, ”walking” and ”box-
ing”. These actions are chosen as they are a subset of most observed human
behaviors in an indoor workplace environment. Example snapshots of different
actions are shown in Figure 2.

A total of 574 videos are collected and are divided into a training set of
355 clips from persons P1, P2, P3, P5, P7 and a testing set of 219 clips from
P0, P4, P6. Each person performed an action multiple times with two different
types of clothing (jacket on and jacket off). Since it is very likely that a person
performs an action similarly in multiple tries, the dataset is split into training
and testing set based on person rather than choosing random subsets of the total
set. The classification accuracy of the activity pipeline (Section 3) on the testing
set is 85.39%. The confusion matrix of the classification experiment is shown in
Table 1.

In order to validate the real time performance of the system, apart from
demonstrating it live on the iCub, we also run the system on longer test videos
collected from users P0, P4, P6 to quantify the results. The classifier module of
the system is set to predict for every new incoming video block which implies a
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new prediction at an interval of seven frames (due to overlap). The classification
performance of the real time system is 74.91 and the corresponding confusion
matrix is reported in Table 1. The deviation from the offline performance on
the testing set is mainly due to inability of the current system to deal with user
activities other than the ones system is trained on.

6 Conclusion

The real-time system presented in this work achieves high processing speeds and
competitive performance by utilizing a very limited set of data samples. The
learned local motion features used by the system are well generalized there by
no additional parameter training (except the classifier) is necessary to be able to
recognize new sets of actions. The parallel architecture and utilization of GPUs
give the system the ability to achieve higher processing speeds when required.
In future we plan to utilize action class information for better detection and
tracking of the user via gaze control of the humanoid robot.
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Abstract.

We focus on a brain-reading task which consists in discovering a word
a person is thinking of based on an fMRI image of their brain. Previous
studies have demonstrated the feasibility of this brain-reading task through
the design of what has been called a semantic space, i.e. a continuous low
dimensional space reflecting the similarity between words. So far the best
results have been achieved by carefully designing this semantic space by
hand which limits the generalization of such a method. We propose to
automatically design several semantic spaces from linguistic resources and
to combine them in a principled way and achieve results comparable to
that of manually built semantic spaces.

1 Introduction

Neuroimaging has gained much interest in the last decade in many fields rang-
ing from philosophy and psychology to neuroscience and artificial intelligence.
Among brain imaging techniques, functional Magnetic Resonance Imaging (fMRI)
has become a primary tool to detect mental activity with great spatial resolu-
tion [1]: an fMRI image contains approximately 20,000 voxels (volumantic pix-
els) that are activated when a human performs a particular cognitive function
(e.g., reading, mental imagery) [2]. With fMRI, it became possible to associate
brain areas with cognitive states: specific conceptual words and pictures trigger
specific activity in some parts of the brain and studies began to focus on the
extraction of meaningful brain activation patterns [3, 4].

A pioneering work [5] showed that it was possible to predict the brain acti-
vation pattern (a fMRI image) in response to a given conceptual stimulus (e.g.
a word). Reciprocally [6] demonstrated on the same dataset the feasibility of
identifying the concept from the brain activation pattern (fMRI image). The
proposed approaches for these two reciprocal tasks share the definition of an
intermediate semantic (or representation) space to represent the concepts, the
underlying idea being that it allows the problem of inferring the concept from
the fMRI (and vice versa) to come down to a standard regression problem from
the fMRI voxel space to the semantic space (and vice versa). Importantly if

∗This work was done while the author was at LIP6 for an internship.
†We want to thank the French government for having funded the stay of L. Pipanmaekaporn

in France within the Franco-Thai Junior Research Fellowship program from May to July 2014.
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Z = {zi}i=1,...,N , zi 2 Rp be the collection of associated word semantic rep-
resentations (N words, namely one for each image represented in p dimensions).
The ridge regressor consists in learning � 2 Rd⇥p coe�cients that maps e�-
ciently from the voxel space to the semantic space. As far as the multitask
LASSO (MTL) is concerned, we assume that we have a K-task, corresponding
to K di↵erent semantic spaces (all being p-dimension). Thus, for each image,
we have K semantic representations associated to targeted word and we dis-
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We adopted a blockwise coordinate descent algorithm proposed in [15] to solve
the multi-task regression. The block regularization corresponds to an hypothesis
that makes sense: for each voxel, we try to vanish all coe�cient associated to
the tasks. Either a voxel is useful or not, but it is unlikely that it is useful for
only a subset of tasks.

Once we get all �(k), we still have to build a decision criterion to choose the
word to be associated to the fMRI. We map each word w in the kth semantic
space using the ⌦(k) function, thus we get ⌦(k)(w) 2 Rp. In parallel, we obtain K
semantic representation associated to the fMRI x using �(k) coe�cients. Then
we compute the cosine similarity in the intermediate space and we merge the
results using a linear combination:
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Obviously, the word with the highest similarity to an fMRI is chosen.

4 Experiments and Discussion

4.1 fMRI dataset

We get the fMRI dataset from [7]. fMRI data was collected from nine partici-
pants while they react to a double stimuli : for each concept, they were shown
a line-drawing, as well as a text label. Concrete concepts are divided into 12 se-
mantic categories (i.e., mammals, body parts, buildings, building parts, clothes,
furniture, insects, kitchen utensils, miscellaneous functional artefacts, work tools,
vegetables, and vehicles) and 5 exemples of each are provided leading to a 60
class problem. The whole protocole is described in depth in [7], and at the
end, we get 20, 000 voxels representing the cortex activity. In our experiments,
we often consider a subset voxels (with a size ranging from 500 to 10000), our
selection procedure is based on the stability criterion also used in [7].
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word to be associated to the fMRI. We map each word w in the kth semantic
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4 Experiments and Discussion

4.1 fMRI dataset

We get the fMRI dataset from [7]. fMRI data was collected from nine partici-
pants while they react to a double stimuli : for each concept, they were shown
a line-drawing, as well as a text label. Concrete concepts are divided into 12 se-
mantic categories (i.e., mammals, body parts, buildings, building parts, clothes,
furniture, insects, kitchen utensils, miscellaneous functional artefacts, work tools,
vegetables, and vehicles) and 5 exemples of each are provided leading to a 60
class problem. The whole protocole is described in depth in [7], and at the
end, we get 20, 000 voxels representing the cortex activity. In our experiments,
we often consider a subset voxels (with a size ranging from 500 to 10000), our
selection procedure is based on the stability criterion also used in [7].

Fig. 1: Brain-reading processing chain

the representation space is designed in such a way that one can get the rep-
resentation of any new word, such a strategy naturally allows the recognition
of concepts from an fMRI image even if there was no training fMRI image for
this word. This may be done in two steps: first, starting from an input fMRI
image, a point in the semantic space is computed using the regression model;
then, the word whose representation is the closest to this point is found: this is
the zero-shot learning setting defined in [6].

Previous studies defined this semantic space ”by hand”. [6] manually de-
signed a 218 dimensional representation space in which a concept representation
is defined according to the answers to 218 questions such as ’is it manmade?’
or ’can you hold it?’. Such a semantic space was designed for a particular set
of concepts. Later on, to extend these methods to deal with a larger number
of concepts, researchers tried to leverage information from lexical and corpus
resources to automatically design a universal and accurate semantic space. For
instance, [6] built a 5000 dimensional semantic space from the Google n-gram
corpus, [7] found that co-occurrences counts with very high frequency words
were an informative representation of words for semantic tasks, [8] examined
various semantic feature representations of concrete nouns derived from 50 mil-
lion English-language webpages, etc.

This work deals with the problem of automatically designing a semantic space
for [6]’s task, i.e. predicting the concept from the fMRI image in the zero-shot
learning setting. Since previous studies have shown the superiority of manually
designed semantic spaces we propose to combine multiple and diverse semantic
spaces, either automatically learned from huge corpora, following recent works
in the machine learning and representation learning community [9], or designed
from various linguistic resources (e.g. WordNet [10]). In order to exploit these
semantic spaces efficiently, we propose to use an effective blockwise regularized
learning algorithm [11] that prevents overfitting and focuses on relevant infor-
mation contained in the fMRI images.

2 Learning Models for Brain Decoding

Our idea consists in combining multiple semantic spaces, some of them being
designed automatically using linguistic resources while others are learned using
representation learning ideas such as the one in [9]. Our system for inferring a
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concept from an fMRI image is illustrated in figure 2. It relies on two multilin-
ear mapping functions: Ω maps a single word w in a continuous p-dimensional
space so that Ω(w) = z ∈ Rp. We refer to this space as a semantic space. Ω
is built using external resources [9, 12] and the representation spaces considered
are detailed in section 3. β enables us to make the link between the fMRI image
vector x ∈ Rd (an image made of d voxels) and the word semantic representation
z ∈ Rp. We first consider a simple strategy by learning independently multiple
ridge regressions: this will be our baseline when considering multiple semantic
spaces in our experiments. We then investigate a more advanced multitask strat-
egy using the multitask blockwise regularized LASSO from [11]: by regularizing
jointly all regression models, we can take into account globally the relevance of
every voxel with respect to the task. This strategy is explained here. Note that
one independent model is learned for each subject.

Let X = {xi}i=1,...,N , xi ∈ Rd be the collection of fMRI images for a subject
and Z = {zi}i=1,...,N , zi ∈ Rp the collection of associated word semantic repre-
sentations. The Ridge Regression (RR) consists in learning β ∈ Rd×p coefficients
that map efficiently from the voxel space to the semantic space. For the Mul-
titask LASSO (MTL), the global blockwise regularized problem is formulated
as:

argmin
β


1

2

N∑

i=1

‖zi − xiβ‖2 + λ

p∑

j=1

‖βj‖∞


with ‖βj‖∞ = max

`
|β`j | (1)

During training, entire rows of the resulting β matrix will ”vanish” so as to focus
only on relevant voxels.

After training K models β(k), corresponding to K different semantic spaces,
we still have to build a decision criterion to choose the word to be associated
to the fMRI. Each word w is mapped in the kth semantic space using the Ω(k)

function, thus we get Ω(k)(w) ∈ Rp. In parallel, we obtain K semantic repre-
sentations associated to the fMRI images x using β(k) coefficients. Their cosine
similarity can then be computed in the intermediate space and the results are
merged using a linear combination, as follows:

sim(x, w) =
K∑

k=1

λk
〈xβ(k),Ω(k)(w)〉
‖xβ(k)‖ ‖Ω(k)(w)‖ s.t.

∑

k

λk = 1 (2)

Obviously, the word with the highest similarity to an fMRI image is chosen.

3 Experiments and Discussion

3.1 fMRI Dataset and Task

The fMRI data was collected from nine participants while subjected to a pair of
stimuli: a line-drawing depicting a particular concept alongside a text label [5]1 .

1[5]’s data is publicly available at http://www.cs.cmu.edu/afs/cs/project/theo-
73/www/science2008/data.html. [6, 8, 11] also test their models on that same dataset
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There were 60 concepts (classes) belonging to 12 semantic categories (mammals,
body parts, buildings, furniture, etc.), each presented 5 times to the participants.
Every fMRI image is comprised of about 20, 000 voxels representing the cortex
activity. Following [5] we considered in our experiments subsets of 500 to 10000
voxels using the same selection procedure they did, based on a stability criterion.

We investigated the zero-shot learning setting defined in [6]. Models’ evalu-
ation was done in a leave-2-out cross-validation setting: the training data con-
sisted in 58 classes, and the models learned were tested on the remaining 2 (thus,
the classes of the test set are completely unknown to the models).

3.2 Word Semantic Features

We now describe the three considered approaches to design a semantic space.

WordNet based semantic space (WN) WordNet provides easy ways for design-
ing a semantic space. This lexicon is organized as a hierarchical tree of concepts
and subconcepts. As a consequence, it is possible to compute a path in the tree
between two concepts (words). Intuitively the smaller this path, the closer these
two concepts are [10]. Based on such a metric, a given word can be represented
in a fixed p-dimensional space by computing its distance to a given set of p rep-
resentative words: we considered the most common words in Wikipedia. We will
call such a semantic space WNpath. Alternative metrics have been proposed in
the literature that lead to other semantic spaces: the closeness of two concepts
can be measured in respect to their closest common ancestor [12] (let us note
the corresponding semantic space WNanc) and [13] defines a criterion inspired
from mutual information, comparing the weights of subtrees associated to each
concept (this semantic space will be denoted WNmi).

Word2Vec semantic space (W2V) Representation learning has emerged in the
recent years as a key research field in the machine learning community. Word2Vec
is an efficient tool that learns continuous and dense representations of words from
text data [9]. It is a supervised learning approach based on neural networks in
which a hidden layer is used to encode a vector representation that captures
syntactic and semantic patterns of words.

Human218 semantic space (H218) The last semantic space we considered is a
baseline noted H218. As explained before it is a manually designed space which
has been obtained from crowdsourcing [6]. For each concept considered a 218
dimensional representation is defined according to the answers from a set of
volunteers to 218 questions like is it manmade? or can you hold it?.

3.3 Results and Discussion

In a preliminary experiment, the semantic space dimension p was optimized us-
ing a large set of voxels (we fixed d = 2000). Results are reported in Fig 2 :
a dimension p = 150 seems to offer a good trade-off between complexity and

436

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



0,65	  

0,67	  

0,69	  

0,71	  

0,73	  

0,75	  

0,77	  

50	   150	   300	   500	   1000	   2000	  
Seman&c	  space	  dimension	  

W2V	  Ridge	  

W2V	  MTL	  

WNpath	  Ridge	  

WNpath	  MTL	  

WNanc	  Ridge	  

WNanc	  MTL	  

WNmi	  Ridge	  

WNmi	  MTL	  

Fig. 2: Accuracy (zero-shot learning) wrt the semantic space dimension, for
various semantic spaces (W2V, WN, ...) and for the two training strategies
(MTL = Multitask LASSO/ Ridge = Ridge Regression)

accuracy, and this value was kept for further experiments. Also, in every seman-
tic space configuration, we notice that MTL (multitask LASSO) systematically
overcomes Ridge regression which validates our regularization strategy for iden-
tifying and neglecting unnecessary voxels. Hence we will focus on this model in
further experiments.

We then performed a combined experiment to study the impact of voxel
preprocessing (reducing the voxel space using the stability criterion proposed
in [5]) as well as the interest of mixing different semantic spaces. All results are
provided in Fig 3. Best results are obtained for a voxel space size of 2000: we
can see MTL procedure can’t deal efficiently with large dimensional noisy data
such as fMRI images (with their 20000 voxels), and that such a preprocessing
to select relevant voxels is recquired.

Our most important result lies in the overall performance on this difficult
brain-reading task: up to now, state-of-the-art results relied on Human218
(H218) resources [6], which is hand-made for this task and questions the ability to
generalize the process to a larger vocabulary. We demonstrate here the interest
of combining different lexical and learned resources to outperform this strategy.
While H218 reaches an accuracy of 80.3% (last column of Fig. 3), being far above
the best single model (WNanc) that reaches 76.2%, it is outperformed by our
combination schemes. Combining 2 resources provides a significative improve-
ment to catch up with H218: W2V + WNanc model reaches 80.3% accuracy.
Adding a third resource (WNpath), we reach 80.7% accuracy.

The comparison of various combinations confirms our assumption: it is more
relevant to combine heterogeneous spaces like W2V and WN than to work with
a single resource.

4 Conclusion

Predicting a concept stimulus from an fMRI image is a hard task which is tradi-
tionally tackled through defining a manual semantic space and learning a regres-
sion model. While this approach has proved effective for a limited set of concepts,
the manual design of the semantic space prevents the approach to be extended
to a larger number of concepts. We tackled the problem by relying on multiple
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Fig. 3: Accuracy (zero-shot learning) with Multitask LASSO wrt the voxel space
dimension and for various semantic space combinations.

semantic spaces automatically designed from resources and trained from large
corpora. Given the dimension of fMRI images, it is necessary to implement a ro-
bust learning strategy: the multitask LASSO we designed allows us to efficiently
select relevant voxels. MTL, combined with Word2Vec and WordNet, catches
up with the state-of-the-art performance in brain-reading relying on hand-made
resource. It is a promising step towards more advanced brain-reading tasks.
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cloud-based neural networks
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Abstract. In this paper we present a scene understanding approach for as-
sistive robotics based on learning to recognize different objects from RGB-D
devices. Using the depth information it is possible to compute descriptors
that capture the geometrical relations among the points that constitute an
object or extract features from multiple viewpoints. We developed a frame-
work for testing different neural models that receive this depth information
as input. Also, we propose a novel approach using three-dimensional RGB-D
information as input to Convolutional Neural Networks. We found F1-scores
greater than 0.9 for the majority of the objects tested, showing that the
adopted approach is effective as well for classification.

1 Introduction

The efficient recognition of parts of the environment is relevant for a variety of sce-
narios ranging from lower-level grasping and manipulation to higher-level robotic
assistance. The way the human brain performs these activities is an attractive
source of inspiration, due to its capacity to deal with noise, to operate in clut-
tered scenarios and to generalize from few examples. Concerning object recogni-
tion, some researchers have focused on viewpoint-independent recognition, assum-
ing that this process can be accomplished using invariant features that must match
three-dimensional representations of objects stored in the memory [1]. Others state
that the brain stores multiple viewpoint representations of objects in the brain and
uses strategies to interpolate and to generalize the results for viewpoints that are
not initially presented [2].

Additionally, depth information can play an important role in recognition [3]
and many approaches for scene understanding and object recognition have been
developed in the last years taking into account the rich information provided by
depth sensors. The impact of depth and RGB data sources was explored in [4],
where the improvement obtained for object recognition tasks performed by a mobile
robot was shown. Similar approaches have been tested in which different neural
models were employed to treat different representations such as color, shape or
depth [5],[6]. This paper differs from these previous approaches since we developed
and evaluated different neural models that take into account the geometry of the
point cloud. We consider that this three-dimensional information processed by the
brain is particularly useful to distinguish parts, faces, etc, of an object under differ-
ent environment conditions. This is potentially important to recognize categories

∗This work is partially supported by CAPES Brazilian Federal Agency for the Support and
Evaluation of Graduate Education (Process number 10441-13-1).
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Fig. 1: (a) Scheme of the proposed framework divided in modules. (b) Scenario
with a NAO robot and three objects. (c) RGB image from the RGB-D device. (d)
Point cloud from RGB-D device. (e) Segmented objects.

and instances (different books, different cups, etc) of objects. Our contribution
can be summarized as follows: i) a novel approach using three-dimensional RGB-D
information as input to Convolutional Neural Networks and ii) an implementation
that encompasses both invariant geometric features from the objects and features
extracted from multiple viewpoints and that allows testing different neural models.

This article is organized as follows: Section 2 presents the framework used
and the neural approaches developed, Section 3 is devoted to our experiments and
Section 4 concludes and presents future directions.

2 Object recognition and interaction with the environment

A database was built containing RGB-D data from objects in different poses (de-
fined as the objects (x, y, z) coordinates and (roll, pitch, yaw) orientations in re-
lation to the RGB-D device’s viewpoint), since the robots should act in an envi-
ronment and recognize objects regardless of the pose (no capture was made with
robots in movement). Figure 1 shows a NAO humanoid robot (b) looking at exam-
ples of these objects on a table and the corresponding RGB image (c) and depth
capture (d).

We are considering the objects located on the largest surface captured by the
RGB-D device. We use RANSAC (RAndom SAmple Consensus) [7] to identify
these planes. In our case, the z axis points to the direction of the objects. There-
fore, for segmentation, the scene is reoriented in a way that the z axis becomes
orthogonal to the normal vector of the plane. Thus, we identify all objects that
have y coordinate values higher than the average value of the y coordinate of the
points that compose the plane. Finally, we consider only objects located within a
tolerance distance from the center of mass of the segmented plane (Figure 1d).
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2.1 Framework for recognition

Figure 1a shows the system overview. The Interface with Environment provides
an interface through which it is possible to manually select the objects previously
segmented. The features extracted from the selected object are sent to the other
modules. The Communication Manager Module is responsible for redirecting mes-
sages exchanged by different modules. Usually, the Interface with Environment
Module will send descriptors captured from RGB-D data to recognition modules
and these modules will send back the categorization/instantiation.

2.2 Recognition based on three-dimensional feature descriptors

In this case, the input to the neural network models is a feature vector obtained us-
ing VFH (Viewpoint Feature Histogram) [8] to collect a multidimensional descriptor
representing the geometrical relations of the points that compose an object. We
also use Principal Component Analysis to reduce the input vector. This descriptor
is used for category recognition with two neural approaches: i) Feedforward Net-
work (MLP+VFH) and ii) Self-organizing Map (SOM+VFH). The SOM adopts
the labelling scheme of the output presented in [9].

2.3 Recognition based on features from multiple viewpoints

We developed an approach that receives multiple viewpoints as input to a Convo-
lutional Neural Networks (CNN) [10]. Generally, CNNs are composed of multiple
layers divided in i) a set of n feature maps (every map is the result of a convo-
lution operation) and ii) a set of n subsampling maps obtained from the feature
maps. We developed and tested two different CNN approaches: i) 2DCNN: CNN
with two-dimensional kernel and ii) S-3DCNN: CNN with three-dimensional kernel,
where a three-dimensional kernel convolves with a stack of images [11]. As typical
in applications that use RGB images, this stack is populated with similar images.
In our case, for each object we generate n sliced planes that are orthogonal to the
z axis (imagine a bread sliced by a knife). As the normal vector to the slice is
parallel to the z axis, each slice is represented as a projection in x-y plane. This
sliced object fills the stack of images, each slice occupying one position. The stack
is used by the S-3DCNN preserving the sequence, as the geometrical relation be-
tween the parts of the object matters. Finally, these slices are then convolved with
the three-dimensional kernel and the weights of this kernel are adjusted taking into
account the position and sequence in the object.

3 Experiments

For our database, it was important to have objects observed from different view-
points on tables and on the floor to comprise different situations in which the
robots could act, since we aimed also testing how the robots generalize the results
for different scenarios. We captured 5 different categories with 5 different objects
for each category (instances) in 6 different viewpoints. In addition, this database
also contains one instance of each category per object (used only in experiments of
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(a)

(b) (c)

(d) (e)

Fig. 2: (a) Online experiment with four objects: (b) Cup, (c) Book, (d) Box and
(e) Can.

category recognition): 5 different categories in 8 different viewpoints, 5 times for
each viewpoint (to take into account noisy captures). The total number of images
acquired was 350. The samples used for training were composed by single objects,
but online tests with multiple objects were also conducted.

The number of units for the MLP, CNN and SOM was 100, 250 and 360 respec-
tively. In the CNN, the number of feature maps in the first and second layer was 20
and 30 respectively. We used a kernel of 5 × 5 pixels. For all neural networks, the
learning rate was 0.01. The number of slices in the S-3DCNN was 10. The training
and testing sets were divided in 60% and 40%. We performed a systematic search
in the parameter space and defined the values that performed better. Each exper-
imental result presented below was obtained from an average over 5 simulations.
This number of runs was chosen due to the computational time required and since
the methods presented very stable results.

Figures 2(a)-(e) show an example of online recognition with four objects on a
table using MLP+VFH. It is important to note that the robot can select one object
each time, which is particularly interesting in cluttered environments. Also, the
object partially occluded can be recognized.

Figure 3a shows the recognition results based on three-dimensional feature de-
scriptors. We can note that both methods have good accuracy with F1-scores
greater than 0.96. To test the performance under different viewpoints, we applied
to each sample rotation in roll, pitch and yaw (3×3×3). Thus, we have 28 samples
per point cloud (27 generated and 1 original). Considering the 350 samples of our
database the total amount is 9800 (28 × 350). For each sample generated, we also
added noise in 10% of each of the clouds.

Figure 3b shows the recognition based on features from multiple viewpoints.
The results have good accuracy with F1-scores greater than 0.89. In the case of
the CNN, we also applied rotation (roll, pitch and yaw) to create a dataset of 9800
samples. The results obtained from Figure 3a and Figure 3b represent different
methodologies (and theories) and should be analysed separately. The CNN ap-
proaches receive images (size 50×50 pixels) from different viewpoints that provide
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Fig. 3: F1-scores for each category: (a) MLP+VFH and SOM+VFH and (b)
2DCNN and S-3DCNN.
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Fig. 4: F1-scores for each instance per category.

information in a slightly different way (projections of the cloud in the x-y plane).
We demonstrated with this experiment that the recognition based on features from
multiple viewpoints offers an efficient alternative approach. The partial knowledge
contained in each viewpoint can be used further for a final decision about the clas-
sification of one object. It is possible to use multiple “readings” from different
viewpoints to recognize an object when the object is not clearly visible due to
noise or distance factors, like animals in general do. Similarly, S−3DCNN has also
promising results and requires investigation about how to use the partial knowledge
contained in each slice, since they can lead to a different classification.

Instance classification results are shown in Figure 4. We choose 2DCNN since
it presented better results in the previous experiments. CNNs can also extract
features based on textures, which is ideal for instance classification. We used two
approaches: i) one 2DCNN to classify all different instances and ii) five differ-
ent 2DCNN per category. In general, the results were better or similar for the
second case, indicating that the division of labour works. But there are 6 cases
for which F1-scores were worse (considering the standard deviation): Box3, Cup2,
Cup3, Sponge2, Sponge4, Sponge5. We believe that this behaviour was caused by
the fact that some of the instances (for example the sponges) do not have strong
geometrical and textural features or that they are too similar to be recognized with
a limited number of samples.
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4 Conclusions and Future Works

The framework presented in this paper was developed keeping in mind that robots
should understand the interactions between objects and other parts of the environ-
ment, such as supporting surfaces. To learn the objects from its RGB-D devices
we developed and tested several neural models. The results enabled us to draw
the conclusion that features obtained from multiple viewpoints are a rich source of
information to be explored. Each view or slice from S-3DCNN potentially stores
valuable information that can be used to improve the recognition. As future steps,
we plan to integrate multiple views captured over time and evaluate the improve-
ment in the recognition accuracy.
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