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Abstract.

Seismic fault extracting is a time consuming task that can be aided by
image enhancement of fault areas. The recent literature addresses this
task by using ant colony optimization (ACO) algorithms to highlight the
fault edges. This work proposes improvements to current state of the
art methods by revisiting and/or reincorporating classic aspects of ACO,
such as ant distribution, pheromone evaporation and deposition, not previ-
ously considered in this seismic fault enhancement scenario.The proposed
approach arrives at good results presenting images with little noise and
great localization of fault edges.

1 Introduction

A representation of the Earth’s crust can be recovered by recording the signal
generated by reflections of acoustic waves against its layers. The seismic am-
plitude volume is produced as the result of this process, known as seismic data
acquisition, where time is the vertical coordinate that grows downwards, and the
other dimensions are called inline and crossline. Each unidimensional sequence
of values in the time dimension, defined as a trace, denotes the amplitudes of
the reflecting acoustic waves. Figure 1(a) presents a sample of a seismic data.

A sequence of peaks (or valleys) in the amplitude across adjacent traces is
called a horizon. Horizons are important structures to be mapped in seismic
data because they represent the interface between layers of different materials.
However the crust may have strong discontinuities across multiple horizons, such
as the one seen on Figure 1(b), which displays a clear rip. These structures are
called seismic faults and demand great effort to be mapped by hand. To aid
geologists, many different image attributes may be used to visually highlight
fault areas, as seen of Figure 1(c). However, these fault attributes often produce
much noise and may not be sufficient for a clear fault edge delineation.

In this work, we address the task of seismic fault attribute enhancement as an
ant colony optimization problem motivated by the good results presented by the
recent literature. We propose revisiting classic formulations of ACO algorithms,
such as ant distribution and pheromone evaporation and deposition, to further
improve the method presented by Zhao et al. [1] by reincorporating then into
our pipeline. Our contributions, detailed in Section 3, resulted in cleaner and
sharper fault edges as illustrated and discussed in Section 4.
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Fig. 1: Seismic amplitude volume, slice and attribute in order.

2 Related Works

Ant colony optimization (ACO) is a swarm intelligence algorithm inspired by
the foraging behavior of ants in nature. Each ant has a very narrow view of the
whole scope of the problem, as well as a limited set of actions it can perform.
However, the interaction of their behavior with that of other ants creates an
emergent intelligence for the colony as a whole.

Additionally, in an application scenario closer to our work, ant colony op-
timization algorithms has been used for fault attribute enhancement in seismic
images. Pedersen et al. [2, 3] use the behavior of the ants for suppressing noise
and Zhao et al. [1] uses a directional field to guide the ants trough the image.

The contributions of our proposal, when compared to the related works cited
above, are explained in further detail in the next sections.

3 Proposed Method

Our method for fault enhancement in seismic slices investigates the benefits of
including classic ACO aspects to the method proposed by Zhao et al. [1], such
as ant distribution and pheromone evaporation and deposition.

3.1 Initialization

The goal of the initialization phase is to prepare the image for a smoother track-
ing of the ants and define the initial states of the simulation. More specifically,
this phase covers the normalization, smoothing, agent distribution and initial
pheromone distribution procedures.

Different seismic attributes have different values associated with fault areas.
Therefore, the fault attribute slice is normalized as to contain values ranging
only between 0.0 and 1.0. However, a simple linear normalization may eliminate
too much information if the attribute image has any outlier values. To address
this issue, we eliminate outliers by clipping the maximum and minimum values
of the image to n standard deviations. In order to eliminate some of the noise
and smooth out strong variations in the attribute value, we use a low pass filter.

The initial position of the ants is a key variable to determine the quality of
the final result. On the one hand, if we have too many ants spawning far away
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from the fault areas, they will generate noise. On the other, excess concentration
of the ants on main fault areas may cause them to ignore other small ones.

Therefore, we used a probabilistic approach as P ki = (ηi)(
∑
j∈I ηj)

−1, where

P ki is the probability of an ant k to spawn on pixel i, I is the universe of pixels
in the image and ηj is the value of the fault attribute on pixel j.

Additionally, in order to ensure a good balance between coverage and con-
centration, we propose using P ki in combination with the approach presented by
Machado et al. [4]. In it, the initial number of ants, N , is divided evenly among
three scales of gamma correction: γ = 0.5, 1 and 1.5.

The initialization of pheromone values to a value E greater than zero is
essential, because, otherwise, the ants would never start the search. Moreover,
in our method, the same value used for the initialization is used to define a lower
limit for the concentration of pheromone in every pixel. Our goal is to stop pixels
from being eliminated from the search if they reach a zero valued pheromone.

3.2 Directional Field

After the seismic attribute image is treated, we use the method described by
Bazen et al. [5] to compute a directional field alongside a related consistency
field. These will be used to guide the ants during the tracking process.

The directions pointed by this field are the directions perpendicular to the
gradient i.e. parallel to the ridge direction. This field is used to decide where
the field of vision of the ants will be centered. The direction v2 of each pixel is
the smallest eigenvector of the autocovariance matrix CG.

However, not all directions can be trusted. Therefore, a consistency field is
created, which assigns a value Coh to how much the direction associated with a
pixel agrees with the directions associated with it’s neighbors’ pixels. It can be
computed as Coh = (

√
(Gxx −Gyy)2 + 4Gxy)(Gxx +Gyy)−1.

The consistency map binarization generates a consistency mask, which will
delineate exactly which pixels can be trusted. In order to achieve more smoothed
areas and eliminate some of the noise in the mask, the binary image undergoes
two classical morphological treatments known as opening and closing.

3.3 Transition Rules

The transition rules dictate the behavior of the ants during the process. In
summary, the transition of an ant k to a pixel i is given by a probabilistic
function (1), where pixels with higher attractiveness have higher probabilities of
being chosen as destination.

Each ant has a limited field of view, within the area of a slice of circle centered
on the ant, pointing in the direction given by the directional field.

An ant’s movement from a pixel to another, also known as transition, is a
probabilistic event which occurs once per turn. Each ant, when its turn comes,
checks which pixels can it move to and chooses its destination based on the
amount of pheromone and on the value of the seismic attribute os the candidates.
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P kij ,given by equation (1), is the probability of an ant k move from pixel i to
pixel j. τj is the amount of pheromone on pixel j; ηj is the value of the seismic
attribute in j; α and β are the weighting factors given to τj e ηj respectively.

P kij =
ταj η

β
j∑

r∈Vk
i

ταr η
β
r

(1)

Every turn, each ant picks a destination among the visible pixels. The loca-
tion is stored in the ant’s memory, so this pixel won’t be visited again by the
same ant. The ant is terminated when the number of pixels stored is bigger than
a constant L, which is limited for memory and performance reasons.

It is highly likely that the destination is not adjacent to the origin. Because
of this, to avoid having discontinuities, we use Bresenham’s [6] line rasterization
algorithm to find the pixels between destination and origin. These pixels, are
treated as visited and are also added to the ant’s memory.

To determine whether an ant is terminated or stays alive, we check the con-
sistency of the current pixel, the direction pointed by the directional field and
which pixels have already been visited.

Every time an ant steps onto a pixel outside of the consistency mask, it
increments a counter Lerr. When this counter reaches a threshold, the ant is
terminated. Also, when the directional field is being calculated, it is possible
that some patches of the image have the same pixel value, which would cause
the directional field to be null, any ant that finds itself in one of these pixels is
terminated. Additionally, if for any reason, an ant finds out that all the pixel it
can see were already visited, it is also terminated.

It is important to remember that when we say that an ant is terminated, it
is, in reality, relocated to a new pixel and it has its memory erased, which causes
the algorithm to always be working with the same number of ants.

3.4 Pheromone Update

The pheromone update runs after the ants take each step. This procedure can
be divided in two parts, evaporation and deposition of pheromone by the ants.

After each step, the pheromone concentration in every pixel is reduced.
This process simulates the evaporation that would occur in nature by reduc-
ing pheromone in pixels less visited pixels, making them even less attractive
to other ants. The evaporation is given as τ ti = τ t−1i (1 − h), where τ ti is the
pheromone concentration on pixel i during step t, and h is the evaporation rate.

The deposition of pheromone occurs right after the evaporation phase. In
this moment, all ants that have been terminated in this iteration deposit an
amount of pheromone equals to τk on top of every pixel in their memory. The
value of τk is proportional to the euclidean distance dij between the first i and
the final j point in the path. This behavior is described as τk = dijT , where T
is the pheromone constant which is used to moderate the amount of pheromone
deposited.
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(a) Attribute (b) Our Result

(c) Zhao (d) Pedersen

Fig. 2: F3Block’s inline 279

3.5 Post Processing

The pheromone map goes through a post processing phase. Firstly, the image
is normalized, then, it’s gamma factor is adjusted in order to suppress noise, in
low intensity areas, and enhance areas where the intensity is high. After that,
the resulting image is input to an edge thinning algorithm. The method used is
the one presented by Canny [7], which uses non-maximum suppression.

4 Results

Next, we present two examples of the results obtained by our proposal along two
other results from the works of Zhao et al. [1] and Pedersen et al. [2, 3].

The input images are displayed by Figures 2(a) and 3(a), which were obtained
using the variance attribute from slices of the amplitude volume F3 Block [8]
after the execution of the oriented filtering described by Daber et.al [9].

Since there were no public code used in either one of them, the results from
the method presented by Pedersen et al. [2, 3] were obtained from an execution
of the Ant Trackingr algorithm by an experienced Geologist, while the results
shown for Zhao et al. [1] were obtained from our implementation of their article.

Our method, ilustrated on Figures 2(b) and 3(b), has a significantly reduced
amount of noise when compared to the others. The fault edges present fewer
discontinuities and less false positives, allowing for an easier extraction.

5 Conclusion

This article proposes ways to improve upon methods that use ACO to enhance
seismic fault attributes. Among our contributions are the pheromone deposition
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(a) Attribute (b) Our Result

(c) Zhao (d) Pedersen

Fig. 3: F3Block’s timeslice 404

proportional to the Euclidean distance, the evaporation of the pheromone pro-
viding noise suppression and the ant distribution in different gamma factors in
order to achieve a good coverage along with good concentration of ants.

As can be seen by the results, our method was capable of delivering cleaner
and sharper fault edges. These characteristics are essential if we were to attempt
an automatic extraction of fault surfaces across multiple slices.
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