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Abstract. Recommendation systems have been integrated into the ma-
jority of large online systems to filter and rank information according to
user profiles. It thus influences the way users interact with the system and,
as a consequence, bias the evaluation of the performance of a recommen-
dation algorithm computed using historical data (via offline evaluation).
This paper presents a new application of a weighted offline evaluation to
reduce this bias for collaborative filtering algorithms.

1 Introduction

Recommendation systems have been very frequently studied in the literature and
aim to provide a user with a set of possibly ranked items that are supposed to
match the interests of the user [5]. Applications of such systems are ubiquitous
in the Internet (e-commerce, online advertising, social networks, ...), and can be
seen as a way to adapt a system to a user.

Obviously, recommendation algorithms must be evaluated before and dur-
ing their active use in order to ensure their performance. Live monitoring is
generally achieved using online performance metrics (e.g. click-through rate of
displayed ads) whereas offline evaluation is computed using historical data. Of-
fline evaluation allows to quickly test several strategies without having to wait
for real metrics to be collected nor impacting the performance of the online sys-
tem. One of the main strategies of offline evaluation consists in simulating a
recommendation by removing a confirmation action (click, purchase, etc.) from
a user profile and testing whether the item associated to this action would have
been recommended based on the rest of the profile [7].

As presented in [3, 1] this scheme ignores various factors that have influenced
historical data as the recommendation algorithms previously used, promotional
offers on some specific products, etc. Even if limits of evaluation strategies for
recommendation algorithms have been identified ([2, 4, 6]), this protocol is still
intensively used in practice.

We study in this paper the general principle of instance weighting proposed
in [1] and show its practical relevance beyond the simple case of constant rec-
ommendation (i.e. if recommendations are the same for every user). In addition
to its good performances, this method is more realistic than solutions proposed
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in [2, 4] for which a data collection phase based on random recommendations
has to be performed. While this phase allows one to build a bias free evaluation
data set, it has also adverse effects in terms of e.g. public image or business
performance when used on a live system.

The rest of the paper is organized as follows. Section 2 describes in details the
setting and the problem. Section 3 introduces the weighting scheme proposed to
reduce the evaluation bias. Section 4 demonstrates the practical relevance of our
method on real world data extracted from Viadeo (professional social network1).

2 Problem formulation

2.1 Notations and setting

We denote U the set of users, I the set of items and Dt the historical data
available at time t. A recommendation algorithm is a function g from U × Dt

to some set built from I. We will denote gt(u) = g(u,Dt) the recommendation
computed by g at instant t for user u. We assume given a quality function l from
the product of the result space of g and I to R+ that measures to what extent
an item i is correctly recommended by g at time t via l(gt(u), i). We denote Iu
the items associated to a user u.

Offline evaluation is based on the possibility of “removing” any item i from
a user profile. The result is denoted u−i and gt(u−i) is the recommendation
obtained at instant t when i has been removed from the profile of user u.

Finally, offline evaluation follows a general scheme in which a user is chosen
according to some probability on users P (u), which might reflect the business
importance of the users. Given a user, an item i is chosen among the items asso-
ciated to its profile, according to some conditional probability on items P (i|u).
When an item i is not associated to a user u (that is i 6∈ Iu), P (i|u) = 0. A
very common choice for P (u) is the uniform probability on U and it is also very
common to use a uniform probability for P (i|u) (other strategy could favor items
recently associated to a profile). As the system evolves over the time, P (u) and
P (i) depends on t.

The two distributions P (u) and P (i|u) lead to a joint distribution P (u, i) =
P (i|u)P (u) on U × I.

2.2 Origin of the bias in offline evaluation

The classic offline evaluation procedure consists in calculating the quality of the
recommendation algorithm g at instant t as Lt(g) = E(l(gt(u−i), i)) where the
expectation is taken with respect to the joint distribution:

Lt(g) =
∑

(u,i)∈U×I

Pt(i|u)Pt(u)l(gt(u−i), i). (1)

Then if two algorithms are evaluated at two different moments, their qualities
are not directly comparable. Although as in an online system P (i|u) evolves over

1See http://corporate.viadeo.com/en/ for more information about Viadeo.
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time2 once a recommendation algorithm is chosen based on a given state of the
system, it starts influencing the state of the system when put in production,
inducing an increasing distance between its evaluation environment (i.e. the
initial state of the system) and the evolving state of the system. This influence
is responsible for a bias on offline evaluation as it relies on historical data.

A naive solution to this bias would be to compare algorithms only with
respect to the original database at t0, but it would discard natural evolutions of
user profiles.

3 Reducing the evaluation bias

3.1 A suggested method to reduce the bias

A simple transformation of equation (1) shows that for a constant algorithm g:
Lt(g) =

∑
i∈I Pt(i)l(gt, i). As a consequence, a way to guarantee a stationary

evaluation framework for a constant algorithm is to have constant values for the
marginal distribution of items, Pt(i).

A natural solution would be to record those probabilities at t0 and use them
as the probability to select an item in offline evaluation at t1 > t0. However, as
the selection of users and items leads to a joint distribution, this would require
to revert the way offline evaluation is done: first select an item, then select a
user having this item with a certain probability πt(u|i) leading to a different
probability of users selection. Finally this process leads to a similar problem on
users, and as in most of systems #U > #I, it is more efficient to follow the
classical evaluation protocol.

Moreover, we will see that the recalibration of every item is not necessary
to reduce the main part of the bias. Indeed in practice most of the time a few
items concentrate most of the recommendations (very popular items, discount
on selected products, ...). Thus one can reduce the major part of the bias by
optimizing the weight of the p items such that the deviation given by |Pt0(i)−
Pt1(i)| have the strongest values. In practice p is chosen according to practical
constraints (time) or business constraints.

Thus the weighting strategy that we described in [1] consists in keeping the
classical choice for Pt(u) and weighting Pt(i|u) by departing from the classical
values for Pt(i|u) (such as using a uniform probability) in order to mimic static
values for Pt0(i) by :

Pt(i|u, ω) =
ωiPt(i|u)∑

j∈It ωjPt(j|u)
. (2)

These weighted conditional probabilities lead to weighted item probabilities
defined by:

Pt(i|ω) =
∑
u∈U

Pt(i|u, ω)Pt(u). (3)

2even if P (u) could also evolve over time we do not consider the effects of such evolution
in the present article.
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Then we minimize the distance between Pt1(i|ω) and Pt0(i) by optimizing
the Kullback-Leibler divergence, defined by :

D(ω) =
∑
i∈It0

Pt0(i) log
Pt0(i)

Pt1(i|ω)

where It0 represents the set of items present at t0. The asymmetric nature of
this distance is useful in our context to consider time t0 as a reference. Moreover
this asymmetry reduces the influence of rare items at time t0 (as they were not
very important in the calculation of Lt0(g)).

3.2 Previous results

As described in [1], in the classical offline evaluation approach the score of an al-
gorithm in production, given by the classical offline evaluation, tends to increase
over time. More generally, the classical offline evaluation tends to overestimate
(resp. underestimate) the unbiased score of an algorithm similar (resp. orthog-
onal) to the one in production.

We have also shown in [1] that the suggested weighting strategy perfectly
recalibrates the score obtained by the classical offline evaluation for constant
algorithms and high values of p. Thus, this method seems to reduce the bias for
the very simple class of constant algorithms.

In the next part we apply this method to collaborative filtering algorithms.

4 Experimentations on a collaborative filtering

4.1 Data and metrics

We consider real world data extracted from Viadeo, where skills are attached to
user’s profile. The objective of the recommendation systems consists in suggest-
ing new skills to users. The dataset contains 18294 users and 180 items (skills),
leading to 117376 couples (u, i).

Both probabilities Pt(u) and Pt(i|u) are uniform, and the quality function l is
given by l(gt(u−i), i) = 1i∈gt(u−i) where gt(u−i) is a set of 5 items. The quality
of a recommendation algorithm, Lt(g), is estimated via stochastic sampling in
order to simulate what could be done on a larger data set than the one used
for this illustration. We selected repeatedly 20 000 couples (user, item) (first we
select a user u uniformly, then an item according to Pt(i|u, ω)).

4.2 Collaborative filtering algorithms

Let Xu,t be the vector of items of user u at time t (Xu,t ∈ {0, 1}#I). Then
Xu,t is a sparse vector as most of users are associated to only a few items. The
objective of collaborative filtering algorithms is to estimate Xu,t′ for t′ > t using
the information known on other users. In this paper we will present two different
collaborative filtering algorithms:
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a)X̂u,t′ =
∑

v∈U\{u}

〈Xu,t, Xv,t〉√
‖Xu,t‖ · ‖Xv,t‖

·Xv,t b)X̂u,t′(i) = max
j∈Iu(t)

#(Ui ∩ Uj)

#Uj

The equation a) is known as collaborative filtering with cosine similarity,
whereas the equation b) computes the proportion of users associated to item i
among the one associated to items possessed by u. Then we will note naive CF
(Collaborative Filtering) the algorithm b).

Finally, the recommendation strategy consists in recommending the k items
having the highest values in X̂u,t′ .

4.3 Results

We apply the method described in Section 3 to compute optimal weights at
different instants and for several values of the parameter p. The collaborative
filtering algorithms are the one presented in section 4.2. Results are summarized
in figure 1.
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Fig. 1: Results on the collaborative filtering with cosine similarity and naive CF,
respectively defined by equation a) and b) in section 4.2, for several values of p
(the number of weights optimized).

The analysis is conducted on a 201 days period, from day 300 to day 500,
where day 0 corresponds to the launch date of the skill feature. It is important
to notice that two recommendation campaigns were conducted by Viadeo during
this period at t = 330 and t = 430 respectively. As we can see on figure 1, the
scores strongly decrease after the first recommendation campaign (t = 330).
Thus those campaigns have strongly biased the collected data, leading to a
significant bias in the offline evaluation score.

The figure 1 shows the influence of the value of p: the higher is p the more
weights are optimized and the more the bias is corrected. However, the effi-
ciency of the recalibration depends on the algorithms. The results show that
the weighting protocol permits to reduce the impact of recommendation cam-
paigns on offline evaluation results as intended. However it does not lead to the
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stationarity of the score of collaborative filtering algorithms (while it leads to
constant scores for constant algorithms). This can be explained by the nature
of collaborative filtering: we cannot expect the score to be constant for such
an algorithm as it depends on the correlation between users, which have been
modified by the recommendation campaigns.

5 Conclusion

Various factors influence historical data and bias the score obtained by classical
offline evaluation strategy. Indeed, as recommendations influence users, a rec-
ommendation algorithm in production tends to be favored by offline evaluation.

We have presented a new application of the item weighting strategy inspired
by techniques designed for tackling the covariate shift problem. Whereas our
previous results presented the efficiency of this method for constant algorithms,
we have shown that this method also reduces the bias of more elaborate algo-
rithms.

However the efficiency of this approach depends on algorithms as a recom-
mendation campaign also introduces bias in the correlation between users. Thus
the presented strategy reduces a part of the bias, and future works will focus on
the structural bias introduced by recommendation campaigns.
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