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Abstract. Many important linear sparse models have at its core the
Lasso problem, for which the GLMNet algorithm is often considered as the
current state of the art. Recently M. Jaggi has observed that Constrained
Lasso (CL) can be reduced to a SVM-like problem, which opens the way to
use efficient SVM algorithms to solve CL. We will refine Jaggi’s arguments
to reduce CL as well as constrained Elastic Net to a Nearest Point Problem
and show experimentally that the well known LIBSVM library results in a
faster convergence than GLMNet for small problems and also, if properly
adapted, for larger ones.

1 Introduction

Big Data problems are putting a strong emphasis in using simple linear sparse
models to handle large size and dimensional samples. This has made Lasso [1]
and Elastic Net [2] often the methods of choice in large scale Machine Learning.
Both are usually stated in their unconstrained version of solving

min
β

Uλ,µ(β) =
1

2
‖Xβ − y‖22 +

µ

2
‖β‖22 + λ‖β‖1 , (1)

where for an N -size sample S = {(x1, y1), . . . , (xN , yN )}, X is an N × d data
matrix containing as its rows the transposes of the d-dimensional features xn,
y = (y1, . . . , yN )t is the N×1 target vector, β denotes the Lasso (when µ = 0) or
Elastic Net model coefficients, and the subscripts 1, 2 denote the `1 and `2 norms
respectively. We will refer to problem (1) as λ-Unconstrained Lasso (or λ-UL),
writing then simply Uλ, or as (µ, λ)-Unconstrained Elastic Net(or (µ, λ)-UEN).
It has an equivalent constrained formulation

min
β

Cρ,µ(β) =
1

2
‖Xβ − y‖22 +

µ

2
‖β‖22 s.t. ‖β‖1 ≤ ρ . (2)

Again, we will refer to problem (2) as ρ-CL, and write Cρ, or as (µ, ρ)-CEN. Two
algorithmic approaches stand out when solving (1), the GLMNet algorithm [3]
that uses cyclic coordinate descent and the FISTA algorithm [4], based on prox-
imal optimization. Recently M. Jaggi [5] has shown the equivalence between
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constrained Lasso and some SVM variants. This is relatively simple when going
from Lasso to SVM (the direction we are interested in) but more involved the
other way around. In [6] Jaggi’s approach is refined to obtain a one way re-
duction from constrained Elastic Net to a squared hinge loss SVM problem. As
mentioned in [5], this opens the way for advances in one problem to be translated
in advances into another and, while the application of SVM solvers to Lasso is
not addressed in [5], prior work in parallelizing SVMs is leveraged in [6] to obtain
a highly optimized and parallel solver for the Elastic Net and Lasso.

In this paper we retake M. Jaggi’s approach, first to simplify and refine the
reductions in [5] and [6] and, then, to explore the efficiency of the SVM solver
LIBSVM, when applied to Lasso. More precisely, our contributions are

• A simple reduction in Sect. 2 of Elastic Net to Lasso and a proof of the
equivalence between λ-UL and ρ-CL. This is a known result but proofs are
hard to find, so our simple argument may have a value in itself.

• A refinement in Sect. 3 on M. Jaggi’s arguments to reduce ρ-CL to Nearest
Point and ν-SVC problems solvable using LIBSVM.

• An experimental comparison in Sect. 4 of NPP-LIBSVM with GLMNet
and FISTA, showing NPP-LIBSVM to be competitive with GLMNet.

The paper will close with a brief discussion and pointers to further work.

2 Unconstrained and Constrained Lasso and Elastic Net

We show that λ-CL and ρ-UL and also (µ, λ)-UEN and (µ, ρ)-CEN have the
same β solution for appropriate choices of λ and ρ. We will first reduce our
discussion to the Lasso case describing how Elastic Net (EN) can be recast as
a pure Lasso problem over an enlarged data matrix and target vector. For
this let’s consider in either problem (1) or (2) the (N + d) × d matrix X and
(N +d)×1 vector Y defined as X t = (Xt,

√
µId), Yt = (yt, 0td) with Id the d×d

identity matrix and 0d the d dimensional 0 vector. It is now easy to check that
‖Xβ − y‖22 + µ‖β‖22 = ‖Xβ − Y‖22 and, thus, we can rewrite (1) or (2) as Lasso
problems over an extended sample

S = {(x1, y1), . . . , (xN , yN ), (
√
µe1, 0), . . . , (

√
µed, 0)}

of size N + d, where ei denotes the canonical vectors for Rd, for which X and
Y are the new data matrix and target vector. Because of this, in what follows
we limit our discussion to UL and CL, pointing where needed the changes to be
made for UEN and CEN, and reverting to the (X, y) notations instead of (X ,Y).

Assuming λ fixed it is obvious that a minimizer βλ of λ-UL is also a minimizer
for ρλ-CL with ρλ = ‖βλ‖1. Next, if βLR is the solution of Linear Regression and
ρLR = ‖βLR‖1, the solution of ρ-CL is clearly βLR for ρ ≥ ρLR, so we assume
ρ < ρLR. Let’s denote by βρ a minimum of the convex problem ρ-CL; we shall
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prove next that βρ solves λρ-UL with λρ = βtρX
t (Xβρ − y) /ρ. To do so, let

e2(β) = 1
2‖Xβ − y‖

2 and g(β) = ‖β‖1 − ρ, and define

f(β) = max{e2(β)− eρ2, g(β)} ,
where eρ2 = e2(βρ) is the optimal square error in ρ-CL. Then, since f is convex,
the subgradient ∂f(β′) at any β′ is

∂f(β′) = {γ∇e2(β′) + (1− γ)h : 0 ≤ γ ≤ 1, h ∈ ∂g(β′) = ∂‖ · ‖1(βρ)} .
Thus, as βρ minimizes f (any β′ with ‖β′‖1 < ρ will have and error greater than
eρ2), there is an hρ ∈ ∂‖ · ‖1(βρ) and γ, 0 ≤ γ ≤ 1, such that 0 = γ∇e2(βρ) + (1−
γ)hρ. But γ > 0, otherwise we would have hρ = 0, i.e., βρ = 0, contradicting
that ‖βρ‖1 = ρ. Therefore, taking λρ = (1− γ)/γ, we have

0 = ∇e2(βρ) + λρhρ ∈ ∂ [e2(·) + λρ‖ · ‖1] (βρ) = ∂Uλρ
(βρ) ,

i.e., βρ minimizes λρ-UL. We finally derive a value for λρ by observing that
βtρhρ = ‖βρ‖1 = ρ and 0 = ∇e2(βρ) + λρhρ = −Xtrβρ + hρλρ, where rβρ is just
the residual (Xβρ − y). As a result,

λρ‖βρ‖1 = βtρhλρ = βtρX
trβρ ⇒ λρ =

βtρX
trβρ

‖βρ‖1
=
βtρX

trβρ

ρ
.

For (µ, ρ)-CEN, the corresponding λρ would be

λρ =
(Y − Xβρ) · Xβρ

ρ
=

(y −Xβρ) ·Xβρ − µ‖βρ‖22
ρ

.

3 From Constrained Lasso to NPP

The basic idea in [5] is to re-scale β̃ = β/ρ and ỹ = y/ρ to normalize ρ-CL into
1-CL and then to replace the `1 unit ball B1 with the simplex

∆2d = {α = (α1, . . . , α2d) ∈ R2d : 0 ≤ αi ≤ 1,

2d∑
i=1

αi = 1} ,

by enlarging the initial data matrix X to an N×2d dimensional X̂ with columns
X̂c = Xc and X̂d+c = −Xc, c = 1, . . . , d. As a consequence, the square error in
the re-scaled Lasso ‖Xβ̃ − ỹ‖2 becomes ‖X̂α − ỹ‖2. Since X̂α now lies in the

convex hull C spanned by {X̂c, 1 ≤ c ≤ 2d}, finding an optimal αo is equivalent to
finding the point in C closest to ỹ, i.e., solving the nearest point problem (NPP)
between the N -dimensional convex hull C and the singleton {ỹ}. In turn, NPP
can be scaled [7] into an equivalent linear ν-SVC problem [8] with ν = 2/(2d+1),
over the sample S = {S+, S−}, where S+ = {X1, . . . , Xd,−X1, . . . ,−Xd} and
S− = {ỹ}. This problem can be solved using the LIBSVM library [9]. The
optimal ρ-CL solution βρ is recovered as follows: first we obtain the optimal
NPP coefficients αo by scaling the ν-SVM solution γo as αo = (2d+ 1)γo, then
we compute (β̃ρ)i = αo

i − αo
i+d and finally we re-scale again βρ = ρβ̃ρ.

Finally, changes for (µ, ρ)-CEN are straightforward, since we only have to
add the d extra dimensions

√
µec and −√µec to the column vectors Xc.
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4 Numerical Experiments

In this section we will compare the performance of the LIBSVM approach for
solving ρ-CL with two well known, state-of-the-art algorithms for λ-UL, FISTA
and GLMNet. We first discuss their expected complexity.

FISTA (Fast ISTA; [4]) combines the basic iterations in Iterative Shrinkage–
Thresholding Algorithm (ISTA) with a Nesterov acceleration step. Assuming
that the covariance XtX is precomputed at a fixed initial cost O(Nd2), the
cost per iteration of FISTA is O(d2), i.e., that of computing XtXβ. If only m
components of β are non zero, the iteration cost is O(dm). On the other hand,
GLMNet performs cyclic coordinate subgradient descent on the λ-UL cost func-
tion. GLMNet carefully manages the covariance computations Xj ·Xk ensuring
that there is a cost O(Nd) only the first time they are performed at a given co-
ordinate k and that afterwards their cost is just O(d). Note that an iteration in
GLMNet just changes one coordinate while in FISTA it changes d components.
Finally, the ν-SVC solver in LIBSVM performs SMO-like iterations that change
two coordinates, the pair that most violates the ν-SVC KKT conditions. The
cost per iteration is also O(d) plus the time needed to compute the required
dot products, i.e., linear kernel operations. LIBSVM builds the kernel matrix
making no assumptions on the particular structure of the data. This may lead to
eventually compute 4d2 dot products (without considering the last column) even
though only d2 are actually needed, since the 2d× 2d dimensional linear kernel
matrix X̂X̂t is made of four d× d blocks with the covariance matrix C = XXt

in the two diagonal blocks and −C in the other two. This can be certainly
controlled but in our experiments we have directly used LIBSVM, without any
attempt to optimize running times exploiting the structure of the kernel matrix.

We compare next the number of iterations and running times that FISTA,
GLMNet and LIBSVM need to solve equivalent λ-UL and ρ-CL problems. We
will do so over four datasets from the UCI collection, namely the relatively
small prostate and housing, and the larger year and ctscan. As it is well
known, training complexity greatly depends on λ. We will consider three possible
λ values for UL: an optimal λ∗ obtained according to the regularization path
procedure of [3], a smaller λ∗/2 value (that should result in longer training) and a
stricter penalty 2λ∗ value. The optimal λ∗ values for the problems considered are
2.04 10−3, 8.19 10−3, 6.87 10−3 and 3.75 10−3 respectively. The corresponding ρ
parameters are computed as ρ = ‖βλ‖1, with βλ the optimal solution for λ-UL.

To make a balanced comparison, for each λ and dataset we first make a
long run of each method M so that it converges to a β∗M that we take as the
optimum. We then compare for each M the evolution of fM (βkM ) − fM (β∗M ),
with βkM the coefficients at the k-th iteration of method M , until it is smaller
than a threshold ε that we take as 10−12 for prostate and housing and 10−6 for
year and ctscan. Table 1 shows in columns 2 to 4 the number of iterations that
each method requires to arrive at the ε threshold. As it can be seen, LIBSVM
is the fastest on this account, with GLMNet in second place and FISTA a more
distant third (for a proper comparison a FISTA iterate is made to correspond to
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Iterations Time (ms)

Dataset LIBSVM GLMNet FISTA LIBSVM GLMNet

prostate (2λ∗) 86 181 1,232 0.051 0.053
prostate ( λ∗) 75 174 1,336 0.049 0.057
prostate (λ∗/2) 52 173 904 0.036 0.075

housing (2λ∗) 143 1,010 5,538 0.266 0.832
housing ( λ∗) 112 933 5,538 0.205 0.749
housing (λ∗/2) 88 666 3,913 0.190 0.520

year (2λ∗) 760 5,584 8,550 1,528.9 558.2
year ( λ∗) 576 6,123 8,460 1,371.8 590.7
year (λ∗/2) 392 6,393 8,640 1,140.6 626.0

ctscan (2λ∗) 972 92,390 190,080 23,935.4 8,823.9
ctscan ( λ∗) 670 78,456 159,744 15,868.2 6,935.8
ctscan (λ∗/2) 418 53,630 132,480 14,999.5 4,173.7

Table 1: Iterations and running times.

d iterates of LIBSVM and GLMNet). Columns 5 and 6 give the times required by
LIBSVM and GLMNet; we omit FISTA’s times as they are not competitive (at
least under the implementation we used). We use the LIBSVM and GLMNet
implementations in the Scikit Python library, which both have a compiled C
core, so we may expect time comparisons to be broadly homogeneous.

Even without considering LIBSVM’s overhead when computing a 2d × 2d
kernel matrix, it is clearly faster on prostate and housing but not so on the
other two datasets. However, it turns out that LIBSVM indeed computes about
4 times more dot products than needed, which suggests that the running time of
a LIBSVM version properly adapted for ρ-CL should have running times about
a fourth of those reported here, outperforming then GLMNet. This behavior is
further illustrated in Fig. 1 that depicts, for housing and ctscan with λ∗, the
number of iterations and running times required to reach the ε threshold.

5 Discussion and Conclusions

GLMNet can be considered the current state of the art to solve the Lasso prob-
lem. M. Jaggi’s recent observation that ρ-CL can be reduced to ν-SVC opens
the way to the application of SVM methods. In this work we have shown us-
ing four examples how the ν-SVC option of LIBSVM is faster than GLMNet
for small problems and pointed out how adapted versions could also beat it on
larger problems. Devising such an adaptation is thus a first further line of work.

Moreover, Lasso is at the core of many other problems in convex regulariza-
tion, such as Fused Lasso, wavelet smoothing or trend filtering, currently solved
using specialized algorithms. A ν-SVC approach could provide for them the
same faster convergence that we have illustrated here for standard Lasso. Fur-
thermore, the ν-SVC training could be speed up, as suggested in [5], using the
screening rules available for Lasso [10] in order to remove columns of the data
matrix. We are working on these and other related questions.
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Fig. 1: Results for housing and ctscan.
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