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Abstract. Diffusion Maps is one of the leading methods for dimension-
ality reduction, although it requires to fix a certain number of parameters
that can be crucial for its performance. This parameter selection is usu-
ally based on the expertise of the user, as there are no unified criterion for
evaluating the quality of the embedding. We propose to use a neighbour-
hood preservation measure as the criterion for fixing these parameters. As
we shall see, this approach provides good embedding parameters without
needing problem specific knowledge.

1 Introduction

A common assumption in many problems is that although original data appear
to have a very large dimension, they actually lie in a low-dimensional manifold
M of which a suitable representation has to be given. This is the scenario in
manifold learning, where the key problem is to identify M and to derive useful
embeddings. The preceding assumption has given rise to a number of methods,
among which one of the main representatives is Spectral Clustering or, more
generally, Diffusion Maps (DM) [1], a dimensionality reduction technique based
on the assumption that the metric of the low-dimensional Riemannian manifold
where data lie can be approximated by a certain diffusion metric. Neverthe-
less, these methods often requires the proper tuning of a number of parameters
but, being an unsupervised problem, the lack of an adequate measure of em-
bedding quality makes parameter selection quite difficult. This is indeed the
case in DM as there are several parameters, such as the number of Markov steps
or the width of the kernel, that have to be selected manually or using some
heuristics. As an alternative, we propose in this paper to use the neighbourhood
preservation measure of [2] as a criterion for selecting the best parameters. As
shown in the experiments, when applied to labelled data, this measure is highly
correlated with the classification accuracy, and can thus be used for automated
unsupervised parameter selection so as to provide good embeddings.

The paper is structured as follows. Section 2 introduces briefly DM. We
review the quality measure and propose how to use it for parameter selection
in Sect. 3, and in Sect. 4 we present some experiments to verify its usefulness.
Finally, Sect. 5 presents some conclusions and pointers to further work.
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2 Diffusion Maps

The first step in DM is to define a weighted graph from the sample using a
similarity matrix wij = exp

(
−‖xi − xj‖2/

(
2σ2
))

. To take into account the
sampling distribution, a parameter α ∈ [0, 1] is introduced to define w(α)

ij =
wij/ (gi

αgj
α), where gi =

∑
j wij is the degree of a vertex i [1]. The degrees

corresponding to these new weights are g(α)i =
∑
j w

(α)
ij , and we can define

the matrix W̃ (α) = {w̃(α)
ij = w(α)

ij/g
(α)

i}, which is a Markov transition ma-
trix over the graph. After fixing a number t of Markov process steps, the t-step
diffusion distance is given by Dt

ij = ‖w̃(α;t)
i,· − w̃(α;t)

j,·‖L2(1/φ0), where φ0 is
the stationary distribution of the Markov process and w̃(α;t) the transition prob-
ability in t steps (the t-th power of w̃(α)). The eigenanalysis of the Markov
matrix W̃ (α) gives [1] an alternative representation of the diffusion distance as
Dt
ij =

∑
k λ

2t
k (ψ(k)

i − ψ(k)
j)

2, with λk the eigenvalues and ψ(k) the left eigen-
vectors of the Markov matrix W̃ (α), and ψ(k)

i = ψk(xi) the eigenvectors’ com-
ponents. If the eigenvalues λk decay rather fast, we can perform dimensionality
reduction by retaining a small number d of the largest eigenvalues and their
corresponding eigenvectors. Once fixed, we would thus arrive to the diffusion
coordinates Ψ = (λt1ψ1(x), . . . , λtdψd(x))>, and we can approximate the diffusion

distance as Dt
ij ≈

∑d
k=1 λ

2t
k (ψ(k)

i−ψ(k)
j)

2 = ‖Ψ(xi)−Ψ(xj)‖2. In other words,
the diffusion distance in the manifold can be approximated by the Euclidean
distance in the DM projected space. Moreover, it is worth mentioning that the
well-known Spectral Clustering [3] method is a particular case of DM for α = 0
and t = 0. A detailed discussion of DM can be found in [4].

One of the problems when using DM in a real context is the dependence of the
embedding quality on its parameters, namely: 1) d, the embedding dimension,
2) σ, the width of the Gaussian kernel, usually selected as the percentile p of
all pattern distances in the original space, 3) α, the parameter to control the
influence of the sampling density, and 4) t, the number of steps. In what follows
we will define a framework for the automated selection of these parameters.

3 Neighbourhood Preservation Measure for DM

Lee and Verleysen introduced in [2] a quality measure for dimensionality reduc-
tions, based on neighbourhood preservation between the original and the reduced
space. Specifically, assume a N pattern sample, and let νki be the set of k nearest
neighbours (kNN) of the i-th pattern in the original space metric and nki the set
of kNN using the metric of the embedding. We define the following measures:

QNX (k) =
1

kN

N∑
i=1

∣∣νki ∩ nki ∣∣ ; RNX (k) =
(N − 1)QNX (k)− k

N − 1− k
.

Notice that QNX (k) measures the average k-ary neighbourhood preservation,
and RNX (k) is just a rescaled version that specifies the improvement over a
purely random dimensionality reduction [5]. This measure can be integrated to
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get a scalar score [6], namely the area under the curve in logarithmic scale:

AUCln =

(∑N−2

k=1

RNX (k)

k

)(∑N−2

k=1

1

k

)−1
.

In this expression all the different neighbourhood sizes are taken into account,
although differently weighted according to the scale. Since the final goal of DM
is to provide an embedding where the local distances are preserved, considering
large neighbourhoods seems pointless. At the same time, when the size is too
small the artefacts and instability associated to 1-NN may appear. This is why
we propose to modify the previous measure to take into account only those
neighbourhoods with sizes between the 5% and 10% of the number of patterns:

AUCln
5:10 =

(∑[0.10N ]

k=[0.05N ]

RNX (k)

k

)(∑[0.10N ]

k=[0.05N ]

1

k

)−1
.

We can use AUCln
5:10 as the fitness function to select an optimum set PAUC

of DM parameters as one that maximizes this measure amongst a discrete grid
of parameter sets, PAUC = arg maxP AUCln

5:10 (DMP), where DMP is the DM
embedding with parameters P. In other words, we can build several DM em-
beddings changing the different parameters that configure them, and compute
for each of these embeddings the value of AUCln

5:10. As we will show in Sect. 4,
selecting the configuration with maximum AUCln

5:10 ensures a good embedding.
Moreover, the main advantage of this novel approach is that we do not need any
kind of additional information about the problem being studied, as the measure
is based solely on the characteristics of the resulting embedding and its relation
with the original dataset.

4 Numerical Experiments

In this section we will confirm that AUCln
5:10 is a good measure of the quality

of an embedding that allows to select the hyper-parameters of DM. We will
work first in a supervised setting using the following datasets of three super-
vised classification problems included in the NLDR Contest of ESANN 2015 [6]:
1) Coil20 , a dataset with pictures of 20 objects (20 classes), with a total number
of 1 440 patterns of dimension 16 384; 2) MNIST , a subset of the MNIST image
bank of handwritten digits, with 3 000 patterns, 576 dimensions and 10 classes;
and 3) Wine, a subset of the UCI Wine quality data set with 4 325 patterns of
dimension 11 and two clusters (red and white), although we shall consider the
12 classes corresponding to the 6 quality levels of each cluster.

In this way we can validate AUCln
5:10 as a proper fitness criterion using as a

ground truth measure of the embedding quality the accuracy of a kNN model.
More precisely, all the datasets correspond here to classification problems in
which the real class of each pattern is known, providing independent information
to measure the suitability of an embedding in terms of the accuracy achievable on
a concrete DM representation. Specifically, we will build a k-Nearest Neighbours
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(kNN) model over each DM, and use as measure the accuracy of this model in a
straightforward leave-one-out configuration, i.e., for each pattern in the dataset
we will predict its label using the nearest k patterns (removing the target pattern
itself). The k parameter is selected as the maximizer of this accuracy over the
original non-embedded data, and it turns to be k = 2 for Coil20 , k = 1 for
MNIST and k = 25 for Wine. With this alternative criterion, denoted by
AcckNN, we can select an “optimal” set of parameters as the maximizer of this
functional, i.e., PAcc = arg maxP AcckNN (DMP). These “supervised” optimal
parameters will be compared with the unsupervised ones PAUC that our proposal
for neighbourhood-based selection yields.

Both criteria will be used to evaluate a series of DM models obtained under
the following different parameter selections: 1) the dimension d will be varied
in the set {1, 2, 3, 4, 5}; 2) the percentile p in {0.5, 1, 10, 50, 75, 99, 100, 150, 200}
(where 0.5 and 1 represent local models, 99 and 100 global models, and by 150
and 200 we just mean extremely large values of 1.5 and 2 times the maximum
pattern distance); 3) the parameter α in {0, 0.5, 1}; and 4) the parameter t in
{0, 1, 2}. These parameters provide a total of 405 different models.

Figure 1 shows the dependence between AcckNN and AUCln
5:10 for the embed-

dings obtained with the distinct parameters. The linear relation between both
fitness criteria is clear and the models with a largest PAcc (computed using class
knowledge) are extremely close to the ones with unsupervised, largest PAUC.

This analysis is further supported by Table 1, which shows the parameters
obtained using the different criteria and the correlation between the AcckNN and
AUCln

5:10 values. In fact, the parameters PAcc and PAUC only differ slightly and
the correlation is above 95% for MNIST and Coil20 . The correlation is a little
smaller in Wine and the parameters PAUC and PAcc differ in both α and p.
Nevertheless, the DMPAcc

and DMPAUC
embeddings are still almost identical, as

shown in Fig. 2. Notice also that all the embeddings take d = 5 (the maximum
allowed); indeed both AcckNN and AUCln

5:10 grow with d, as a higher d means
retaining more information about the original data.

Therefore, AUCln
5:10 seems to be a good unsupervised measure to evaluate

the quality of an embedding and, thus, to select optimal DM hyper-parameters.
We have checked this using the Swiss Roll (SwiRol) dataset of [6], which con-
tains a rolled 2-dimensional manifold embedded into a 3-dimensional space, with
1 500 patterns (see Fig. 3)1. In particular, we are interested in whether the opti-
mal PAUC parameters provide a good embedding when AcckNN is not available.
Figure 3 includes the original SwiRol dataset and the 1- and 2-dimensional em-
beddings obtained using PAUC (parameters are in Table 1) where we fix d to 1 in
the 1-dimensional case and allowed to vary in {1, 2} in the other (larger values of
d do not make sense, as the original data is 3-dimensional). The colour orderings
show that both embeddings find the underlying manifold structure and confirm
AUCln

5:10 as an effective unsupervised quality measure.

1Although the NLDR Contest proposes also another unsupervised dataset, namely a 3-
dimensional sphere, it is not clear which should be the 2-dimensional representation of the
manifold, as there exists no homomorphism to unroll the sphere; this is why it is not included.
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Fig. 1: Relation between AcckNN and AUCln
5:10: the different models are depicted

with ◦; DMPAcc and DMPAUC are marked by × and +, respectively; and the
dotted black line corresponds to AcckNN over the original data.

Dataset Criterion d p(%) α t AcckNN AUCln
5:10 Corr. (%)

Coil20
AUCln

5:10 5 200.0 1.0 0 96.04% 0.659
95.48%

AcckNN 5 200.0 0.0 0 96.11% 0.659

MNIST
AUCln

5:10 5 1.0 0.0 0 69.50% 0.498
97.76%

AcckNN 5 0.5 0.0 0 70.77% 0.495

Wine
AUCln

5:10 5 99.0 0.5 0 50.64% 0.653
85.73%

AcckNN 5 100.0 0.0 0 52.09% 0.636

SwiRol
AUCln

5:10 1 0.5 0.0 0 × 0.374 ×
AUCln

5:10 2 0.5 0.5 2 × 0.602

Table 1: Parameters obtained (with corresponding AcckNN and AUCln
5:10) and

correlation between both fitness criteria.

5 Conclusions

We have introduced a methodology to select the parameters of Diffusion Maps
(DM) that provide a good embedding of the data. It is based on maximizing
the measure proposed in [2], i.e., the area under a curve which represents the
preservation of the neighbourhood between the original data and the embedding.
While a full x-range is considered in [2], we integrate this area only for neigh-
bourhoods of sizes between 5% and 10% of sample size, resulting in the criterion
AUCln

5:10 that aims at a good balance between the sharpness and the locality of
the embeddings. We have shown that in this unsupervised and parameter-free
approach, AUCln

5:10 is highly correlated with the accuracy of a kNN classification
model, and that the parameters that maximize AUCln

5:10 provide embeddings
able to find the underlying structure of the data, for example correctly unrolling
the classical Swiss Roll.

As further work, we intend to exploit AUCln
5:10 in concrete DM applications

and also to study the relation between AUCln
5:10 and the embedding dimension

505

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



Φ1

Φ
2

DMPAcc
Embedding

Φ1

Φ
2

DMPAUC
Embedding

Fig. 2: Embeddings for the Wine dataset using PAcc and PAUC.

x1 x2

x
3

Original Data

Φ1

DM1D
PAUC

Embedding

Φ1

Φ
2

DM2D
PAUC

Embedding

Fig. 3: Original data and embeddings for the SwiRol dataset.

d. It is to be expected that AUCln
5:10 increases with d, but it is interesting to see

if it saturates once the dimension of the underlying manifold is achieved, so that
any additional increment in d adds almost no information (in terms of AUCln

5:10).
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