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Abstract. In this paper we propose an adaptive bilinear mixing of
dissimilarities for better classification learning. In particular, we focus on
prototype based learning like learning vector quantization. In this sense
the learning of the mixture can be seen as a kind of dissimilarity learning
as counterpart to dissimilarity selection in advance. We demonstrate this
approach working for relational as well as median variants of prototype
learning for proximity data.

1 Introduction

Data in machine learning are usually compared in terms of dissimilarities or
similarities, which have to be properly selected by the user in advance. The
concrete choice frequently is a crucial step, because this selection determines
the behavior of the data processing model. For example, classification models
may distinguish data according to a certain proximity measure whereas another
does not display any differences of objects regarding the given classification task.
One possibility to diminish this difficulty is to apply parametrized dissimilarity
measures, which can be adapted in parallel during the classification learning. Re-
spective approaches became attractive during the last years. In learning vector
quantization (LVQ), as one of the most prominent prototype-based classifica-
tion models, those parametrized approaches are well established starting with
the relevance learning of the scaled Euclidean metric parametrized by relevance
parameters for each data dimension [1], which was later extended to matrix rel-
evance approach allowing the adaptation of an arbitrary bilinear combination of
data dimensions [2]. Generally, those models are referred as adaptive schemes
where the adaptation of the applied dissimilarity takes place to improve the
classification performance.

If the data objects consist of heterogeneous components, a single dissimilar-
ity measure might not be sufficient to describe the relations between the data.
For this situation, in [3] a bilinear mixing of sub-dissimilarities was suggested
to describe the data relations in the context of LVQ-learning, each of the sub-
dissimilarities only be responsible for partial components of the data vectors.
Further, the mixing of the sub-dissimilarities is also subject of optimization
during classification learning, such that an adaptive combination scheme is ob-
tained for both mixing and classification. It is assumed in the approach [3] that
all sub-dissimilarities are differentiable and the dissimilarities can be calculated
at time. Hence, an online stochastic gradient descent learning (SGDL) can be
applied when a cost based classifier is used like the generalized LVQ (GLVQ,[4]).

If several dissimilarities are available for the data reflecting different proper-
ties of the data, then each of them can be used for a separate classifier learning.
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Afterwards a fusion strategy could be applied to combine the single classifiers.
For this purpose, several strategies are known including boosting or ensemble
learning. An overview related to prototype-based classification is given in [5].

In this work we combine both approaches for adaptive combination of dis-
similarities in prototype based classification learning. Particularly, we take the
mixing and weighting of proximities as a scheme for dissimilarity learning, i.e.
determination of which dissimilarity or which combination of proximity is most
adequate for the classification task to be learned. This can be interpreted as
a kind of distance learning as proposed in [6, 7], which may be also used for
dissimilarity selection and weighting with respect to the given task.

Unfortunately, the differentiability assumption for the dissimilarity measures
as it is required for SGDL in [3] cannot always be made in applications. For
example, for many tasks the data objects to be classified are only provided by
dissimilarity or similarity matrices describing their relations. For those scenarios,
relational and kernels methods are adequate in classification [8, 9]. However, for
support vector machines (SVM) feature weighting seems to be difficult [10].
Particularly, the bilinear mixing of kernels, according to the bilinear mixing
suggested in [3] for dissimilarities, may lead to an overall proximity measure not
longer being a kernels as supposed for SVM.

We show in this paper, how to integrate bilinear mixing and weighting of
dissimilarities in prototype-based classification learning, if only proximity data
are provided. Thereby, we exemplify the approach using variants of GLVQ as an
intuitive and powerful classifier model. However, a transfer to other LVQ-models
like Robust Soft LVQ (RSLVQ,[11]), for example, is straight forward.

2 Combination of dissimilarities in GLVQ

The GLVQ is a modification of standard LVQ providing a cost function, which
can be minimized by SGDL [4]. Assume N data objects vj , K prototypes
W = {w1, . . . ,wK} and M single dissimilarity measures dk (v,w) . Adopting
the idea from [3] we merge them into the combined bilinear measure

δ (v,w) = dT (v,w) Λd (v,w) (1)

where Λ = ΩTΩ and Ω ∈ Rl×M is the mixing matrix and d (v,w) =

(d1 (v,w) , . . . , dM (v,w))
T

the dissimilarity vector. It becomes linear for di-
agonal Λ, i.e. this corresponds to a linear combination of the dissimilarities.
For the dissimilarity measure we only assume non-negativeness and reflexivity
dk (v,v) = 0 according to [12, 13]. Hence, δ (vi,vj) is a non-negative bilinear

form with δ (v,w) = (Ω · d (v,w))
2
. Then the cost function of the respective

GLVQ with combined dissimilarity (CD-GLVQ) becomes

ECD−GLVQ =
∑
j

f
(
µδ (vj)

)
(2)

with f is a monotonically increasing squashing function and

µδ (vj) =
δ+ (vj)− δ− (vj)

δ+ (vj) + δ− (vj)
(3)
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is the classifier function. The quantity δ+ (vj) represents the overall dissimi-
larity of vj to the most similar prototype w+ of the correct class and δ− (vj)
is defined analogously for the incorrect class. Accordingly, we have d± (v) and
d±k (v). The squashing function frequently is supposed to be the sigmoid function
fθ (x) = 1/ (1 + exp (−θx)) such that for large values θ the Heaviside function
is approximated [14].

If differentiability is assumed for single dissimilarities dk, the SGDL for the
prototypes according to (2) is obtained as

∆w± = ∓αW · f ′ · ξ± ·
〈
Λ · d± (v) |∂w±d± (v)

〉
(4)

for a given data object v with the scaling factors

ξ± =
2 · δ∓ (vj)

(δ+ (vj) + δ− (vj))
2 , and ∂w±d± (v) =

(
∂d±1 (v)

∂w±
, . . . ,

∂d±M (v)

∂w±

)T
is the vector of the derivatives of the single dissimilarities. Further, 〈·|·〉 in (4)
denotes the Euclidean inner product. We can update the mixing matrix Ω by

∆Ωkl = −αΩ · f ′ ·
(
ξ+ · d+

l (v) ·
[
Ω · d+ (v)

]
k
− ξ− · d−l (v) ·

[
Ω · d− (v)

]
k

)
(5)

for a given data object v, realizing a SGDL for Ω simultaneously applied to the
prototype learning (4). Thereby, [·]k denotes the kth component of a vector.

If only proximity data are available, and single dissimilarities dk are assumed
to be embeddable into the Pseudo-Euclidean space [12], stochastic gradient de-
scent relational learning (SGDRL) has to replace the SGDL (4) for prototype
learning [8], whereas the mixing matrix update remains unaffected. For rela-
tional methods it is supposed that the prototypes wk are convex linear combi-
nations of the data, i.e. wl = 〈γl|vj〉 with the non-negative coefficient vector

γl = (γl1, . . . , γlN )
T

and data dissimilarities dk (vi,vj) are given by the symmet-

ric dissimilarity matrix Dk ∈ RN×N+ . Thus the SGDL of the prototypes wl take
place as a respective update of the coefficient vectors γl according to

∆γ± ∝ ∓f ′ · ξ± ·
〈
Λ · d± (vi) |∂γ±d± (vi)

〉
(6)

where

∂γ±d
(
vi,w

±) =

(
∂d±1 (vi)

∂γ±
, . . . ,

∂d±M (vi)

∂γ±

)T
(7)

is the vector of the formal derivatives. Particularly, we have

∂d±k (vi)

∂γ±
=
∂
(

[Dk · γ±]i − (γ±)
T ·Dk · γ±

)
∂γ±

(8)

with the derivative is calculated according to

∂
(

[Dk · γl]i − (γl)
T

Dk · γl
)

∂γl
= JDkKi −Dkγl (9)
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Figure 1: a) Triangle data set (AD) with the three classes ◦, ∗ and �. b)
Averaged mixing matrix of the AD data set learned using MLVQ. c) Averaged
mixing matrix of the spectral data set learned using MLVQ.

as shown in [8], whereby JDkKi denotes the ith column vector of Dk.
If a subset or all single dissimilarities dk are neither differentiable nor Pseudo-
Euclidean embeddable, for example Dk is not symmetric, median variants like
Median-GLVQ (MLVQ) come into play [15]. Median-GLVQ does not require
Pseudo-Euclidean assumption on data and, hence, can be applied also in those
cases. Doing so, the cost function ECD−GLVQ from (2) can be adapted by an
alternating scheme as a greedy strategy: First, the prototypes are optimized by
Median-GLVQ keeping the mixing matrix Ω fixed. Afterwards, ECD−GLVQ is
minimized with respect to the mixing matrix according to the SGDL given by
(5) for fixed prototypes, which remains still applicable [16].

3 Experiments

We illustrate the approach by the application to two datasets. The first one is
an artificial example whereas the second one is real world hyperspectral dataset
for coffee classification. The artificial data set (AD) consists of two-dimensional
data belonging to three overlapping classes arranged like a triangle, see Fig.1.
The classes are generated by Gaussians with covariance matrices given as

Σ1 =

(
20 −18
−18 20

)
, Σ2 =

(
50 0
0 1

)
, Σ3 =

(
20 18
−18 20

)
with locations µ1 = (10, 7), µ2 = (0, 0), and µ3 = (−10, 7). The number of data
for the classes are N1 = 500, N2 = 1000, N3 = 500. The distances used in this
experiment are chosen as the class specific Mahalanobis-distances (dΣi).

The coffee dataset (CD) consists of 256-band hyperspectra with equidistant
bands in the range between 970nm and 2500nm already described in [17]. The
data belong to 5 coffee types with 5000 spectra per class. The dissimilarities
used here were the squared Euclidean distance (dE), the squared Euclidean
distance of the spatial derivatives as defined for Sobolev-distances (dS), several
γ-divergences (dγ) including the Cauchy-Schwarz-divergence for (γ = 1).

For both dataset we conducted the following experiments: First we applied
relational GLVQ (RLVQ,[8]) and MLVQ separately for each of the available
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dissimilarities (separate runs). Thereafter, we applied again both approaches for
a fixed linear combination (fLC) with equal weighting. Both experiments serve
as a baseline. To demonstrate the capability of the proposed distance metric
learning we applied in the next step an adaptive linear combination (aLC) and
a adaptive bilinear mixing (bLM) using the full Ω-matrix. The aLC was used in
combination with both, RLVQ and MLVQ, whereas bLM was applied only with
MLVQ. The results for the experiments are given as averages over 15 runs.

The results of the experiments are collected in Tab.1. For the AD, the
results of the separate runs were outperformed using the mixtures for MLVQ
and RLVQ. Additionally, both adaptive variants show a further improvement
in comparison to fLC with a small advantage in case of RLVQ. The dissim-

ilarity weighting vectors are obtained as λMLVQ = (0.406, 0.372, 0.222)
T

and

λRLVQ = (0.359, 0.320, 0.321)
T

for aLC. Thus, the dissimilarity dΣ1 is indicated
as most important for class discrimination within the both linear combination.
Note, the accuracy of the respective separate run is not highest, i.e. this strong
importance of the dissimilarity dΣ2 only appears in combination with the others.
The mixing matrix for bLM with MLVQ is depicted in Fig.1b). We observe that
the off-diagonal values indicate the importance of bilinear dissimilarity mixing
for further improvement.

For CD, the separate runs were again improved by the combined approaches
for both MLVQ and RLVQ. However, for RLVQ using the dS-dissimilarity, no
further improvement is achieved using mixtures of dissimilarities. The weight-
ing coefficients according to the dissimilarity vector

(
dE , dS , dγ0.25, d

γ
1.00, d

γ
1.50

)
are resulted as λMLVQ = (0.216, 0.238, 0.338, 0.093, 0.115)

T
and λRLVQ =

(0.125, 0.558, 0.238, 0.013, 0.066)
T

. Both methods indicate the γ-divergences
with γ ≥ 1 as less important whereas the other ones are ranked differently.
This may be dedicated to the greater flexibility of RLVQ compared to MLVQ.
We observe that the separate run of RLVQ with dS-dissimilarity yielded a similar
performance as aLC and, particularly, also outperformed MLVQ, whereas MLVQ
with bilinear mixing is comparable to combined RLVQ (the mixing matrix is de-
picted in Fig.1c)). Hence, MLVQ, which has strong restrictions regarding the
prototypes, profits more from the flexibility offered by distance mixing learning
than RLVQ. However, a direct interpretation of the weighting is at least difficult.

4 Conclusions

In this paper we describe a method for adaptive dissimilarity weighting in pro-
totype based classification learning. The method is applicable for proximity
data and shows good performance. We exemplified the methodology for GLVQ.
However, it can be easily transferred to other LVQ-schemes like RSLVQ.
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