
Policy-gradient Methods for Decision Trees

Aurélia Léon and Ludovic Denoyer

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Abstract. We propose a new type of decision trees able to learn at the
same time how inputs fall in the tree and which predictions are associated
to the leaves. The main advantage of this approach is to be based on
the optimization of a global loss function instead of using heuristic-based
greedy techniques, while keeping the good characteristics of decision trees.
The learning algorithm is inspired by reinforcement learning and based on
gradient-descent based methods, allowing a fast optimization. Moreover
the algorithm is not limited to (mono-label) classification task and can
be used for any predictive problem while a derivable loss function exist.
Experimental results show the effectiveness of the method w.r.t baselines.

1 Introduction

Decision Trees are popular machine learning methods based on a divide-and-
conquer strategy for prediction. They are usually learned with greedy algorithms
based on different heuristics that aim at building the structure of the tree on a
training set, resulting in sub-optimal learned models.

We propose a new family of decision trees called Reinforced Decision
Trees (RDTs) which aims at keeping the advantages of decision trees – i.e fast
inference speed, high performance – with the ability of being easily learned on
different problems by using fast gradient-based descent approaches. The main
idea of RDT is to consider the classification problem as a sequential decision
process where a learned policy guides any input x in a tree structure from the
root to one leaf. The learning algorithm is inspired from policy-gradient meth-
ods [1] which allows us to act on both the way an input x falls into the tree
and on the predictions associated with the leaves of this tree. The difference
with classical Decision Trees learning techniques is that our algorithm aims at
directly solving a global (derivable) objective function without using heuristic-
based greedy techniques. When comparing to classical classification techniques,
our model benefits from the tree architecture which greatly reduces the compu-
tation complexity during prediction. A set of experiments over different datasets
shows the efficiency of our approach.

2 Notations and Model

We consider the multi-class classification problem where each input x ∈ R
n has

to be associated with one of the C possible categories1. Let us denote y ∈ R
C

the label of x, such that yi = 1 if x belongs to class i and yi = −1 elsewhere.
We will denote {(x1, y1), ..., (xN , yN)} the set of N training examples.

1Note that the model naturally handles other predictive problems when a derivable loss
function exists, and is not restricted to classification.

453

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 1: (left) An example of RDT. The πθ functions and the α values (the vectors
in the leaves of the tree) have been learned in one integrated step following a
policy-gradient based method. Bold values correspond to predicted categories at
the leaves level. (right) Decision frontier learned by the model on a 2D dataset
with 32 different categories.

2.1 Reinforced Decision Trees Architecture

The Reinforced Decision Tree (RDT) architecture shares common points with
decision trees. Let us denote Tθ,α such a tree with parameters θ and α that will
be defined later: (i) The tree is composed of a set of nodes denoted nodes(Tθ,α) =
{n1, ..., nT } where T is the number of nodes of the tree. (ii) n1 is the root of the
tree. (iii) parent(ni) = nj means that node nj is the parent of ni. Each node
but n1 has only one parent, n1 has no parent since it is the root of the tree. (iv)
leaf(ni) = true if and only if ni is a leaf of the tree.

Note that we do not have any constraint concerning the number of leaves or
the topology of the tree. Each node of the tree is associated with its own set of
parameters: (i) A node ni is associated with a set of parameters denoted θi if ni
is an internal node i.e leaf(ni) = false. (ii) A node ni is associated with a set
of parameters denoted αi ∈ R

C if ni is a leaf of the tree.
Parameters θ = {θi} are the parameters of the policy that will guide an input

x from the root node to one of the leaves of the tree. Parameters αi correspond
to the prediction that will be produced when an input reached the leaf ni. Our
architecture is thus very close to classical decision trees, the major difference
being that the prediction associated with each leaf is a set of parameters that
will be learned during the training process, allowing the model to choose how
to match the leaves of the tree with the categories. The model will thus be
able to simultaneously learn which path an input has to follow based on the θi
parameters, but also how to organize the categories in the tree based on the αi

parameters. An example of RDT is given in Figure 1.

2.2 Inference Process

Let us denote H a trajectory, H = (n(1), ..., n(t)) where n(i) ∈ nodes(Tθ,α) and
(i) is the index of the i-th node of the trajectory. H is thus a sequence of nodes

454

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

where n(1) = n1, ∀i > 1, n(i−1) = parent(n(i)) and leaf(n(t)) = true.
Each internal node ni is associated with a function (or policy) πθi : for a given

input x, πθi(x, n) = P (n|ni, x) is the probability that x moves from the node ni

to the node n (with P (n|ni, x) = 0 if n /∈ children(ni)). In our experiments, πθi
is a linear function followed by a soft-max. Note that the difference between RDT
and DT is that the decision taken at each node is stochastic, which will allow
us to use gradient-based learning algorithms. The probability of a trajectory
H = (n(1), ..., n(t)) given an input x can be written as:

P (H|x) =
t−1
∏

i=1

πθ(i)(x, n(i+1))

Once a trajectory has been sampled, the prediction produced by the model
depends on the leaf n(t) reached by x. The model directly outputs α(t) as a
prediction, α(t) being a vector in R

C (one score per class) as explained before,
also learned on the training set. The model thus produces one score for each
possible category, but the inference complexity of this step is O(1) since it just
corresponds to returning the value α(t).

After training, the output is the vector α(t) associated to the most probable
leaf.

2.3 Learning Process

The goal of the learning procedure is to simultaneously learn both the policy
functions πθi and the output parameters αi in order to minimize a given learning
loss Δ which corresponds here to a classification loss (e.g square loss or hinge
loss). Our learning algorithm is based on an extension of policy gradient
techniques inspired from the Reinforcement Learning literature and similar
to [2]. More precisely, our learning method is close to the methods proposed
in [1] with the difference that, instead of considering a reward signal which is
usual in reinforcement learning, we consider a loss function Δ. This function
computes the quality of the system, providing a richer feedback information than
simple rewards since it can be derivated, and thus gives the direction in which
parameters have to be updated. The performance of our system is denoted
J(θ, α):

J(θ, α) = EPθ(x,H,y)[Δ(Fα(x,H), y)]

where Fα(x,H) is the prediction made following trajectory H - i.e the sequence
of nodes chosen by the π-functions. The optimization of J can be made by
gradient-descent techniques and we need to compute the gradient of J :

∇θ,αJ(θ, α) =

∫

∇θ,α (Pθ(H|x)Δ(Fα(x,H), y))P (x, y)dHdxdy

=

∫

Pθ(H|x)∇θ,α (logPθ(H|x))Δ(Fα(x,H), y)P (x, y)dHdxdy

+

∫

Pθ(H|x)∇θ,αΔ(Fα(x,H), y)P (x, y)dHdxdy

455

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Using the Monte Carlo approximation of this expectation by taking M trail
histories over theN training examples, and given thatΔ(Fα(x

i, H), y) = Δ(α(t), y),
we obtain:

∇θ,αJ(θ, α) =
1

N

1

M

N∑

i=1

M∑

k=1

[
t−1∑

j=1

(
∇θ,α

(
log πθ(j)(x

i)
)
Δ(α(t), y)

)
+∇θ,αΔ(α(t), y)

]

Intuitively, the gradient is composed of two terms: the first term aims at pe-
nalizing trajectories with high loss, and the second term is responsible about how
to allocate the categories in the leaves of the tree. We use a classical stochastic
gradient descent-based algorithm with mini-batches.

The complexity of the inference process is linear with the depth of the tree.
Typically, in a multi-class classification problem, the depth of the tree can be
proportional to logC, resulting in a very high speed inference process. Note that
different functions topologies can be used for π. In the following we have used
simple linear functions, but more sophisticated ones can be tested like neural
networks. Moreover, in our model, there is no constraints upon the α parameters,
nor about the loss function Δ which only has to be derivable. It means that our
model can also be used for other tasks like multivariate regression, or even for
producing continuous outputs at a low price.

3 Experiments

In this Section, we provide a set of experiments that have been made on a toy
dataset used for visualization, and real datasets. Our model has been com-
pared with two baseline models: linear one-versus-all SVMs and Decision Trees.
Hyper-parameters (learning rates, size of mini-batches and number of iterations)
have been tuned on a validation set, and the results have been averaged on five
different runs. For Decision Trees, we used the implementation in scikit-learn of
an optimized version of the CART algorithm.

3.1 Results

A first set of experiments has been performed on different multi-class UCI
datasets - see Table 1. One can see that the best performance is obtained with
RDT and a depth of 10. Note that the inference complexity of RDT with depth
D is O(D) which is lower or equals to the complexity obtained with one-versus-
all SVM, resulting in faster models during inference. In comparison to classical
decision trees, our model takes more time to train but obtains better results.
We think that it is due to the fact that we optimize a global objective without
using greedy-based learning techniques, and that the splits are linear and not
necessarily parallel to axis. Figure 1 (right) illustrates the model obtained on
a 2D dataset with 32 categories, and allows us to better understand the nature
of the learned decision frontier. RDTs also outperform Decision Trees on this
dataset.

456

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

D pendigits optdigits letter mnist
#train samples 3745 1911 6661 50000
#val samples 3748 1908 6652 10000
#test samples 3497 1796 6687 10000

#features 16 64 16 784
#classes 10 10 26 10

Linear SVM 17.38 ± 3.62 6.84 ± 0.46 29.98 ± 0.01 8.47 ± 0.02
Decision Tree 5 22.61 ± 0.08 31.47 ± 0.13 63.24 ± 0.01 32.53 ± 0.01

8 11.40 ± 0.20 18.89 ± 0.21 37.22 ± 0.08 18.44 ± 0.02
10 9.99 ± 0.24 16.63 ± 0.35 30.73 ± 0.09 14.09 ± 0.06
(*) 9.74 ± 0.35 16.00 ± 0.24 17.90 ± 0.14 12.87 ± 0.04

RDT 5 5.35 ± 1.41 7.24 ± 0.83 30.89 ± 1.13 7.73 ± 0.50
8 4.45 ± 1.25 5.86 ± 0.26 15.81 ± 0.75 6.25 ± 0.57
10 3.43 ± 0.34 5.35 ± 0.71 12.34 ± 0.44 5.41 ± 0.44

Table 1: Classification error (%) of different models and RDTs, where each node
has exactly two children. D is the depth of the built trees. In the Decision Tree
(*), nodes are expanded until all leaves are pure or until all leaves contain less
than 2 samples.

4 Related Work

Hierarchical models have been developed for two cases: (i) a first one where a
hierarchy of category is already known; in that case, the hierarchy of classifiers
is mapped on the hierarchy of classes. (ii) A second approach closer to ours
consists in automatically building a hierarchy from the training set. This is usu-
ally done in a preliminary step by using for example clustering techniques like
spectral clustering on the confusion matrix [3], using probabilistic label tree [4]
or even partitioning optimization [5]. Facing these approaches, RDT has the
advantage to learn the hierarchy and the classifier in an integrated step only
guided by a unique loss function. The closest works are [6] where a hierarchical
mixture of experts is learned using EM algorithm, [7] that constructs globally
optimal decision trees and can optimize existing decision trees, [8] which discov-
ers the hierarchy using online learning algorithms, the construction of the tree
being made during learning, or more recently [9] where the split functions and
the leaf parameters of the decision tree are optimized together using stochastic
gradient descent and a global objective. Other families of methods have been
proposed like error-correcting codes [10, 11, 12], sparse coding [13] or even using
representation learning techniques, representations of categories being obtained
by unsupervised models [14, 3].

At last, the use of sequential learning models, inspired by reinforcement
learning, in the context of classification or regression has been explored recently
for different applications like features selection [15] or image classification [16,
17]. Our model belongs to this family of approaches.

457

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

5 Conclusion and Perspectives

We have presented Reinforced Decision Trees which is a learning model able to
simultaneously learn how to allocate categories in a hierarchy and how to classify
inputs. RDTs are sequential decision models where the prediction over one input
can be made using O(logC) classifiers, making this method suitable for problems
with large number of categories. Moreover, the method can be easily adapted to
any learning problem like regression or ranking, by changing the loss function.
RDTs are learned by using a policy gradient-inspired method. Experimental
results show the effectiveness of this approach. Future work mainly involves the
use of this model for continuous outputs problems.

References

[1] J. Baxter and P. Bartlett. Direct gradient-based reinforcement learning, 1999.

[2] Ludovic Denoyer and Patrick Gallinari. Deep sequential neural network. arXiv preprint
arXiv:1410.0510 - Workshop Deep Learning NIPS 2014, 2014.

[3] Samy Bengio, J Weston, and D. Grangier. Label embedding trees for large multi-class
tasks. Adv. Neural Inf. Process. Syst., (1):163–171.

[4] Baoyuan Liu, Fereshteh Sadeghi, Marshall Tappen, Ohad Shamir, and Ce Liu. Prob-
abilistic label trees for efficient large scale image classification. Comput. Vis. Pattern
Recognit., pages 843–850, 2013.

[5] Jason Weston, A Makadia, and Hector Yee. Label partitioning for sublinear ranking. Int.
Conf. Mach. Learn.

[6] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em
algorithm. Neural computation, 6(2):181–214, 1994.

[7] Kristin P Bennett and J Blue. Optimal decision trees. Rensselaer Polytechnic Institute
Math Report, 214, 1996.

[8] Anna Choromanska and John Langford. Logarithmic Time Online Multiclass prediction.
pages 1–13, 2014.

[9] Mohammad Norouzi, Maxwell Collins, Matthew A Johnson, David J Fleet, and Push-
meet Kohli. Efficient non-greedy optimization of decision trees. In Advances in Neural
Information Processing Systems, pages 1720–1728, 2015.

[10] TG Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. arXiv Prepr. cs/9501101.

[11] RE Schapire. Using output codes to boost multiclass learning problems. ICML, (1):1–9.

[12] M Cissé, T Artières, and P Gallinari. Learning compact class codes for fast inference in
large multi class classification. Eur. Conf. Mach. Learn.

[13] Bin Zhao and Eric P. Xing. Sparse output coding for large-scale visual recognition.
Comput. Vis. Pattern Recognit., pages 3350–3357, 2013.

[14] Kilian Weinberger and Olivier Chapelle. Large margin taxonomy embedding with an
application to document categorization. Adv. Neural Inf., pages 1–8.

[15] Gabriel Dulac-arnold, Ludovic Denoyer, Philippe Preux, and Patrick Gallinari. Datum-
wise classification. A sequential Approach to sparsity. ECML/PKDD, pages 375–390.

[16] Gabriel Dulac-Arnold, Ludovic Denoyer, Nicolas Thome, Matthieu Cord, and Patrick
Gallinari. Sequentially generated instance-dependent image representations for classifica-
tion. Internation Conference on Learning Representations - ICLR 2014, 2014.

[17] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW: A recurrent
neural network for image generation. CoRR, abs/1502.04623, 2015.

458

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

