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Abstract. We propose a new type of decision trees able to learn at the
same time how inputs fall in the tree and which predictions are associated
to the leaves. The main advantage of this approach is to be based on
the optimization of a global loss function instead of using heuristic-based
greedy techniques, while keeping the good characteristics of decision trees.
The learning algorithm is inspired by reinforcement learning and based on
gradient-descent based methods, allowing a fast optimization. Moreover
the algorithm is not limited to (mono-label) classification task and can
be used for any predictive problem while a derivable loss function exist.
Experimental results show the effectiveness of the method w.r.t baselines.

1 Introduction

Decision Trees are popular machine learning methods based on a divide-and-
conquer strategy for prediction. They are usually learned with greedy algorithms
based on different heuristics that aim at building the structure of the tree on a
training set, resulting in sub-optimal learned models.

We propose a new family of decision trees called Reinforced Decision
Trees (RDTs) which aims at keeping the advantages of decision trees — i.e fast
inference speed, high performance — with the ability of being easily learned on
different problems by using fast gradient-based descent approaches. The main
idea of RDT is to consider the classification problem as a sequential decision
process where a learned policy guides any input x in a tree structure from the
root to one leaf. The learning algorithm is inspired from policy-gradient meth-
ods [1] which allows us to act on both the way an input z falls into the tree
and on the predictions associated with the leaves of this tree. The difference
with classical Decision Trees learning techniques is that our algorithm aims at
directly solving a global (derivable) objective function without using heuristic-
based greedy techniques. When comparing to classical classification techniques,
our model benefits from the tree architecture which greatly reduces the compu-
tation complexity during prediction. A set of experiments over different datasets
shows the efficiency of our approach.

2 Notations and Model

We consider the multi-class classification problem where each input « € R™ has
to be associated with one of the C possible categories'. Let us denote y € RY
the label of x, such that y; = 1 if z belongs to class ¢ and y; = —1 elsewhere.
We will denote {(z!,4'), ..., (xV,y™)} the set of N training examples.

INote that the model naturally handles other predictive problems when a derivable loss
function exists, and is not restricted to classification.
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Fig. 1: (left) An example of RDT. The 7y functions and the « values (the vectors
in the leaves of the tree) have been learned in one integrated step following a
policy-gradient based method. Bold values correspond to predicted categories at
the leaves level. (right) Decision frontier learned by the model on a 2D dataset
with 32 different categories.

2.1 Reinforced Decision Trees Architecture

The Reinforced Decision Tree (RDT) architecture shares common points with
decision trees. Let us denote 7y such a tree with parameters ¢ and o that will
be defined later: (i) The tree is composed of a set of nodes denoted nodes(7g,) =
{n1,...,nr} where T is the number of nodes of the tree. (ii) n; is the root of the
tree. (iii) parent(n;) = n; means that node n; is the parent of n;. Each node
but ny has only one parent, n; has no parent since it is the root of the tree. (iv)
leaf(n;) = true if and only if n; is a leaf of the tree.

Note that we do not have any constraint concerning the number of leaves or
the topology of the tree. Each node of the tree is associated with its own set of
parameters: (i) A node n; is associated with a set of parameters denoted 6; if n;
is an internal node i.e leaf(n;) = false. (ii) A node n; is associated with a set
of parameters denoted a; € R if n; is a leaf of the tree.

Parameters 6§ = {6;} are the parameters of the policy that will guide an input
z from the root node to one of the leaves of the tree. Parameters a; correspond
to the prediction that will be produced when an input reached the leaf n;. Our
architecture is thus very close to classical decision trees, the major difference
being that the prediction associated with each leaf is a set of parameters that
will be learned during the training process, allowing the model to choose how
to match the leaves of the tree with the categories. The model will thus be
able to simultaneously learn which path an input has to follow based on the 6;
parameters, but also how to organize the categories in the tree based on the «;
parameters. An example of RDT is given in Figure 1.

2.2 Inference Process

Let us denote H a trajectory, H = (n(l), s N(y)) where ngy € nodes(Ty o) and
(7) is the index of the i-th node of the trajectory. H is thus a sequence of nodes
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where n() = ni, Vi > 1,n¢_1) = parent(n(;)) and leaf(n) = true.

Each internal node n; is associated with a function (or policy) my,: for a given
input z, 7, (x,n) = P(n|n;, z) is the probability that  moves from the node n;
to the node n (with P(n|n;, ) = 0 if n ¢ children(n;)). In our experiments, 7y,
is a linear function followed by a soft-max. Note that the difference between RDT
and DT is that the decision taken at each node is stochastic, which will allow
us to use gradient-based learning algorithms. The probability of a trajectory
H = (n(1),...,n()) given an input x can be written as:

t—1
P(H|z) = ] 7o, (@, n(i41))
=1

Once a trajectory has been sampled, the prediction produced by the model
depends on the leaf n(y reached by x. The model directly outputs a(; as a
prediction, ;) being a vector in R® (one score per class) as explained before,
also learned on the training set. The model thus produces one score for each
possible category, but the inference complexity of this step is O(1) since it just
corresponds to returning the value o).

After training, the output is the vector a(y) associated to the most probable
leaf.

2.3 Learning Process

The goal of the learning procedure is to simultaneously learn both the policy
functions my, and the output parameters a; in order to minimize a given learning
loss A which corresponds here to a classification loss (e.g square loss or hinge
loss). Our learning algorithm is based on an extension of policy gradient
techniques inspired from the Reinforcement Learning literature and similar
to [2]. More precisely, our learning method is close to the methods proposed
in [1] with the difference that, instead of considering a reward signal which is
usual in reinforcement learning, we consider a loss function A. This function
computes the quality of the system, providing a richer feedback information than
simple rewards since it can be derivated, and thus gives the direction in which
parameters have to be updated. The performance of our system is denoted
J(0, a):
J<97 a) = Ep, (z,H,y) [A(Fa (z, H), y)]

where F,,(x, H) is the prediction made following trajectory H - i.e the sequence
of nodes chosen by the w-functions. The optimization of J can be made by
gradient-descent techniques and we need to compute the gradient of J:

Ve,aJ(97 Ot) = /Ve,a (PG(H|x)A(Fa(x’ H)a y)) P(LU, y)dea:dy
- / Py(H|2) Va0 (logPy(H2)) A(Fa (e, H), y)P(x, y)dHdady

+ / Py(H|2) Voo A(Fa(, H), y) Pz, y)dHdrdy
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Using the Monte Carlo approximation of this expectation by taking M trail
histories over the N training examples, and given that A(Fo (2, H), y) = A(aw), y),

we obtain:
11 N M t—1 ]
Vo,oJ(0,a) = N Z Z |:Z (Veya (logwe(j) (;UZ)) A(a(t),y)) + ngaA(Oé(t), y)]
i=1 k=1 [j=1

Intuitively, the gradient is composed of two terms: the first term aims at pe-
nalizing trajectories with high loss, and the second term is responsible about how
to allocate the categories in the leaves of the tree. We use a classical stochastic
gradient descent-based algorithm with mini-batches.

The complexity of the inference process is linear with the depth of the tree.
Typically, in a multi-class classification problem, the depth of the tree can be
proportional to log C, resulting in a very high speed inference process. Note that
different functions topologies can be used for 7. In the following we have used
simple linear functions, but more sophisticated ones can be tested like neural
networks. Moreover, in our model, there is no constraints upon the o parameters,
nor about the loss function A which only has to be derivable. It means that our
model can also be used for other tasks like multivariate regression, or even for
producing continuous outputs at a low price.

3 Experiments

In this Section, we provide a set of experiments that have been made on a toy
dataset used for visualization, and real datasets. Our model has been com-
pared with two baseline models: linear one-versus-all SVMs and Decision Trees.
Hyper-parameters (learning rates, size of mini-batches and number of iterations)
have been tuned on a validation set, and the results have been averaged on five
different runs. For Decision Trees, we used the implementation in scikit-learn of
an optimized version of the CART algorithm.

3.1 Results

A first set of experiments has been performed on different multi-class UCI
datasets - see Table 1. One can see that the best performance is obtained with
RDT and a depth of 10. Note that the inference complexity of RDT with depth
D is O(D) which is lower or equals to the complexity obtained with one-versus-
all SVM, resulting in faster models during inference. In comparison to classical
decision trees, our model takes more time to train but obtains better results.
We think that it is due to the fact that we optimize a global objective without
using greedy-based learning techniques, and that the splits are linear and not
necessarily parallel to axis. Figure 1 (right) illustrates the model obtained on
a 2D dataset with 32 categories, and allows us to better understand the nature
of the learned decision frontier. RDTs also outperform Decision Trees on this
dataset.
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D pendigits optdigits letter mnist
F#train samples 3745 1911 6661 50000
##val samples 3748 1908 6652 10000
F#test samples 3497 1796 6687 10000
#features 16 64 16 784
#£classes 10 10 26 10
Linear SVM 17.38 £+ 3.62 6.84 + 0.46 29.98 £+ 0.01 8.47 + 0.02

Decision Tree 5 22.61 £ 0.08 | 31.47 +0.13 | 63.24 £ 0.01 | 32.53 + 0.01
8 11.40 + 0.20 | 18.89 £ 0.21 | 37.22 £ 0.08 | 18.44 £+ 0.02
10 9.99 + 0.24 16.63 &+ 0.35 | 30.73 £ 0.09 | 14.09 £+ 0.06
(*) 9.74 £ 0.35 16.00 + 0.24 | 17.90 + 0.14 | 12.87 £ 0.04
5 5.35 £ 1.41 7.24 +0.83 30.89 £ 1.13 7.73 £ 0.50
8 4.45 £ 1.25 5.86 + 0.26 15.81 £ 0.75 6.25 + 0.57
10 3.43 £ 0.34 5.35 + 0.71 12.34 + 0.44 5.41 + 0.44

RDT

Table 1: Classification error (%) of different models and RDTs, where each node
has exactly two children. D is the depth of the built trees. In the Decision Tree
(*), nodes are expanded until all leaves are pure or until all leaves contain less
than 2 samples.

4 Related Work

Hierarchical models have been developed for two cases: (i) a first one where a
hierarchy of category is already known; in that case, the hierarchy of classifiers
is mapped on the hierarchy of classes. (ii) A second approach closer to ours
consists in automatically building a hierarchy from the training set. This is usu-
ally done in a preliminary step by using for example clustering techniques like
spectral clustering on the confusion matrix [3], using probabilistic label tree [4]
or even partitioning optimization [5]. Facing these approaches, RDT has the
advantage to learn the hierarchy and the classifier in an integrated step only
guided by a unique loss function. The closest works are [6] where a hierarchical
mixture of experts is learned using EM algorithm, [7] that constructs globally
optimal decision trees and can optimize existing decision trees, [8] which discov-
ers the hierarchy using online learning algorithms, the construction of the tree
being made during learning, or more recently [9] where the split functions and
the leaf parameters of the decision tree are optimized together using stochastic
gradient descent and a global objective. Other families of methods have been
proposed like error-correcting codes [10, 11, 12], sparse coding [13] or even using
representation learning techniques, representations of categories being obtained
by unsupervised models [14, 3].

At last, the use of sequential learning models, inspired by reinforcement
learning, in the context of classification or regression has been explored recently
for different applications like features selection [15] or image classification [16,
17]. Our model belongs to this family of approaches.
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5 Conclusion and Perspectives

We have presented Reinforced Decision Trees which is a learning model able to
simultaneously learn how to allocate categories in a hierarchy and how to classify
inputs. RDTs are sequential decision models where the prediction over one input
can be made using O(log C) classifiers, making this method suitable for problems
with large number of categories. Moreover, the method can be easily adapted to
any learning problem like regression or ranking, by changing the loss function.
RDTs are learned by using a policy gradient-inspired method. Experimental
results show the effectiveness of this approach. Future work mainly involves the
use of this model for continuous outputs problems.
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