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Abstract. We focus on learning over multivariate and relational time-
series where relations are modeled by a graph. We propose a model that
is able to simultaneously fill in missing values and predict future ones.
This approach is based on representation learning techniques, where tem-
poral data are represented in a latent vector space so as to capture the
dynamicity of the process and also the relations between the different
sources. Information completion (missing values) and prediction are per-
formed simultaneously using a unique formalism, whereas most often they
are addressed separately using different methods.

1 Introduction

Temporal data correspond to a wide variety of phenomena from stock market
to internet traffic forecasting. Different kind of temporal data can be produced:
monovariate and multivariate time series where the produced values are real
values. The recent emergence of sensors everywhere - e.g mobile phones which
typically produce temporal sequences of complex data (GPS, events, ...) - is an
example that illustrates the need of new machine learning models for temporal
data processing. Indeed, the produced information has particular characteris-
tics that can’t be handled by classical sequential and temporal models: they
contain multiple missing values and one has to consider simultaneously multiple
sources that can be somehow related, by spatial proximity for example. (i)On
one side, several models have been proposed for multivariate time-series or se-
quences prediction. The most popular are probably neural networks [1] - an
overview of related methods is given in Section 5. However, these models have
not been conceived for dealing with missing data. On the other side, some mod-
els have been also proposed with the goal of automatically completing missing
information (data imputation) [2], like matrix factorization techniques [3]. But
data imputation and data prediction are usually seen as two different problems.
Moreover, two time series can be related to each other. At the best of our knowl-
edge, there exist no model able to deal with all these characteristics and tasks
conjointly. We propose a novel method that aims at integrating all the aspects
of complex temporal data in one single model. The proposed approach is based
on representation learning techniques aiming at projecting the observations in
a continuous latent space, each sequence being modeled at each time-step by
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a point in this space. It has many advantages w.r.t existing techniques: (i) it
is able to simultaneously learn how to fill missing values and to predict the fu-
ture of the observed temporal data, avoiding to use two different models, (ii) it
naturally allows one to deal with information sources that are organized among
a graph structure (iii) the model is based on continuous optimization schemes,
allowing a fast optimization over large scale datasets.

1.1 Related Work

The representation learning (and deep learning) is a very active field where dif-
ferent recent works target some of the aspects studied here. For example, the
problem of learning representation over sequential data has been used with dif-
ferent approaches like Recurrent Neural Networks [4]. The main difference w.r.t
our model is that the RNN-based methods are inductive (the representation is
induced from observations) while our model is a transductive model (the obser-
vations are induced from learned representations) which makes it more suitable
for the completion problem: missing values are built from the representations.
Our model is also related to multi-view deep neural networks like [5] . Here also,
our transductive approach is more suitable for data where some of the views are
missing. As far as we know, there is no existing model in this community that
mix relational information, temporal information and heterogeneity.
At last, the traffic prediction problem is an old topic. In particular, different
techniques have been evaluated like ARIMA (Autoregressive Integrated Moving
Average) which have been applied in the context of multivariate time-series [6].
For a large overview on this techniques in the field of traffic forecasting, you can
refer to [7]. In practice, neural networks are predominant and are at the center of
a large number of publications which propose different architectures [8]. Neural
Networks are also the baseline competitor which is often used [9].

1.2 Notations

We consider a set of n temporal sequences x1, ..xn such that x
(t)
i ∈ X is the value

of the i-th sequence at time t defined by xi = (x
(1)
i , .., x

(T )
i ) . The sequences

contain missing values so we also define a mask m
(t)
i such that m

(t)
i = 1 if value

x
(t)
i is observed - and thus available for training the system - and m

(t)
i = 0 if x

(t)
i

is missing - and thus has to be predicted by the model. In addition, we consider
that there exists a set of relations between the sequences which correspond to
an external information, like spatial proximity for example when X is discrete.
The sequences are thus organized in a graph G = {ei,j} such that ei,j = 1 means
that xi and xj are related, and ei,j = 0 elsewhere. The two tasks that we want
to (conjointly) solve are the following: (i) The problem of prediction consists
in predicting what happens next given the observed temporal data. (ii) Data
completion consists in missing values inference in the sequences.
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2 Representation-baSed temporal relational model

The goal of our model is to take into account the different types of information
available in the dataset which are: (i) the observed values, (ii) the relations
between the information sources and (iii) the dynamicity of the system. We
propose to capture this information in a large dimensional latent space Z in
which each observation will correspond to a particular point (or embedding) at

each time step, denoted z
(t)
i ∈ Z . The RepresentAtIoN-baSed TempOral

Relational Model (RAINSTORM) is a loss-based model which is described
through a continuous derivable loss function that will be optimized using classical
optimization techniques. The approach proposed is close to the ones of the
deep learning community but the proposed model is different from classical deep

neural networks techniques since an explicit representation z
(t)
i is learned for

each time-step and each source. The main interest of this approach is to be able
to deal easily with missing values while classical NN-based techniques are less
suitable for this case.
Let us define L(θ, γ, z) the loss function to minimize where z is the set of all the

vectors z
(t)
i for i ∈ [1..n] and t ∈ [1..T ], T being the size of the observed time

windows i.e. the history of the time series. We define L as:

L(θ, γ, z) = 1

O

n
∑

i=1

T
∑

t=1

m
(t)
i Δ(fθ(z

(t)
i ), x

(t)
i )

︸ ︷︷ ︸

(term 1)

+λdyn

n
∑

i=1

T−1
∑

t=1

||z(t+1)
i − hγ(z(t)i )||2

︸ ︷︷ ︸

(term 2)

+ λstruct
∑

i,j∈[1..N ]2

T
∑

t=1

ei,j ||z(t)i − z(t)j ||2 (term 3)

(1)

where O is the number of observed values i.e. values such that m
(t)
i = 1.

This loss function contains three terms, each one associated with one of the
constraints that have been presented previously: Term 1 simultaneously learn z

and a function fθ - called decoding function - such that, from z
(t)
i , fθ can be

used to predict the value x
(t)
i . The function fθ(z

(t)
i ) is defined as fθ : RN → X .

Δ is used to measure the error between predicting fθ(z
(t)
i ) instead of x

(t)
i , m

(t)
i

playing the role of a mask restricting to compute this function only on the

observed values. Term 2 aims at finding values z
(.)
i and a dynamic model hγ

such that, when applied to z
(t)
i , hγ allows us to predict the representation of the

next state of time series i i.e. z
(t+1)
i . hγ is the dynamic function which models

the dynamicity of each series directly in the latent space: hγ : RN → R
N . At

last, term 3 corresponds to a structural regularity over the graph structure
that encourages the model to learn closer representations for time series that are
related. This will force the model to learn embeddings that reflect the structure
of the considered graph. λdyn and λstruct are manually defined coefficients that
weight the importance of the different elements in the loss function. For fθ and
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hγ , different architectures can be chosen; we propose one in the experimental
section.

2.1 Learning and Inference

The learning problem aims at minimizing the loss function L(θ, γ, z) simultane-
ously on θ, γ and z. By restricting the fθ and hγ to be continuous derivable
functions, we can use classical stochastic gradient-descent (SGD) based opti-
mization approaches. Let us now describe how inference is made.

Completion of missing values: For all missing values x
(t)
i such that

m
(t)
i = 0, the proposed learning algorithm has learned a z-value z

(t)
i in the

latent space. This learned value has been mainly ’chosen’ based on term 2 and 3
of the loss function (Equation 1) while the decoding term has not been tuned on

z
(t)
i since x

(t)
i is unknown. In order to predict this missing value, our approach

simply computes the value fθ(z
(t)
i ) which produces a plausible output value.

Predicting the future: For all t > T , the model does not compute z-

values and these z
(t)
i are unknown. But our model learns a dynamic function hγ

which goal is to allow the prediction of z
(t+1)
i given z

(t)
i . So, for any i, z

(T+1)
i

can be computed by hγ(z
(T )
i ). The future value x

(T+s)
i can thus be predicted by

simply computing fθ(hγ(hγ(hγ(........hγ(z
(T )
i )..))) where hγ is applied s times,

the obtained vector being then transformed to prediction by using fθ.

3 Experiments

We consider a road network as a graph where each node corresponds to a road,
and edges are connections between roads: two roads are connected if they be-
long to the same crossroads. Experiences have been made on two datasets cor-
responding to two different cities: Warsaw and Beijing which are composed of
about 20,000 roads (see [10] and [11] for complete statistics). The sampling fre-
quency is about 10 minutes, and at each timestep some sensors return measures

over a subset of roads (i.e. the roads such that m
(t)
i = 1). This measure is typi-

cally the average speed of cars on the road (for Warsaw dataset), or a measure
of the volume of cars (for Beijing). To evaluate our method, we consider a set
of training values and a set of testing values. Testing values are of two types:
part of the testing values are sampled uniformly in the set of observed values
for t ∈ [1..T ], T being the size of the observed data. These testing values will
be used for evaluating the quality of the completion model. All values for t > T
are considered as testing values and will be used for evaluating our model in
prediction. Moreover, a sub-part of the testing values will be used as validation
data for tuning the hyperparameters.

3.1 Models

Different architectures for RAINSTORM have been tested and we have kept the
following by validation: it uses a one hidden layer neural network for hγ with
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N Model/Data Beijing Warsaw

RoadMean 5.51 11.02

NeuralNetwork 4.77 8.05

SAE 4.75 7.85

5 RAINSTORM 4.82 7.74

10 RAINSTORM 4.78 7.21

20 RAINSTORM 4.54 7.19

50 RAINSTORM 4.66 7.60

Table 1: Prediction performance at
T+1 for different size of latent space
N using a root mean square error
(RMSE)

Model/Data Beijing Warsaw

RoadMean 5.55 11.10

MF 3.58 6.80

MF-Geo 3.24 6.49

RAINSTORM 2.99 6.49

RAINSTORM 3.03 6.24

RAINSTORM 3.22 6.23

RAINSTORM 2.97 6.70

Table 2: Completion performance
for 50% missing data for different
sizes N of the latent space using a
root mean square error (RMSE)

200 hidden neurons and a hyperbolic tangent as activation function. A Simple
Linear function is used for the decoding function. It has been compared with
the following baselines.

Completion: MF: This correspond to the classical matrix factorization
framework, described for instance for the task of traffic forecasting in [12]. MF-
with geographic context: This method is the one named TSE (traffic speed
estimation) in [12]. It consists on minimizing a reconstruction cost on a traffic
matrix for which external information such as geographic position in a city is
incorporated.

Prediction: NeuralNetwork: This is a classical baseline method used in
traffic forecasting based on a neural network architecture, described for instance
in [13]. SAE: This is the method described in [14] ; it consists on a deep ar-
chitecture of stacked auto-encoders trained on the traffic history. RoadMean
predicts and fills missing values with the mean of observed values on the whole
sequence.

3.2 Experiments and Results

We first focus on filling missing values in the two datasets. We have used 50%
of the observations for training, 40% for testing and 10% for validation. Each
performance has been computed by averaging the results obtained on 20 differ-
ent runs. Table 2 illustrates the results obtained by the baselines and by our
models, considering different sizes N of the latent space. One can see that the
three RAINSTORM models outperforms the baselines for almost all the tested
dimensions N .

For the second set of experiments, we focus on the prediction problem. Here,
the values at time t > T are removed from the training set; 20% of the removed
values are used as validation set and the 80% remaining are the test set. Table
1 shows the performance of the different models for the prediction task using a
RMSE evaluation at t = T + 1 on the volume or average speed of the cars on
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each road. It also shows that, used as a prediction model, RAINSTORM obtains
better results than baseline techniques.

4 Conclusion

We have presented a new way to learn over incomplete multiple sources of tem-
poral relational data sources. Our approach is based on representation learning
techniques and aims at integrating in a latent space the observed information,
the dynamicity of the sequences of data, and their relations. In comparison to
baselines models that have been developed for prediction only or completion
only, our approach shows interesting performance and is able to simultaneously
complete missing values and predict the future evolution of the data.
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