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Abstract. Spectrograms provide a visual representation of the vibrations of 

civil aircraft engines. The vibrations contain information relative to 

damage in the engine, if any. This representation is noisy, high 

dimensional and the relevant signatures relative to damages concern only a 

small part of the spectrogram. All these arguments lead to difficulties to 

automatically detect anomalies in the spectrogram. Adequate lower 

dimensional representations of the spectrograms are needed. In this paper, 

we study two types of representations with dictionary, a data-driven one 

and a non-adaptive one and we show their benefits for automatic anomaly 

detection. 

1 Introduction 

Each engine manufactured by Snecma is tested on a bench before its delivery to the 

airline company. Several measures, such as vibrations or performances, are recorded 

to determine the status of the engine.  

 Vibrations are one of the most pertinent information to analyze the engine 

behavior. Each potential defect in an engine component may induce a source of 

vibrations detectable in the vibration spectrogram rather than in the temporal signal. 

An expert is able to detect the damaged signatures looking at the spectrogram. 

However the high dimension of the spectrogram overwhelms this information. In a 

previous work [1], we discussed the use of a dimension reduction for anomaly 

detection. In this work, another representation based on an overcomplete fixed 

dictionary is investigated. The benefits of the decomposition in a dictionary are well 

known, but the dictionary has to be selected wisely.  

In this paper we studied and compared two kinds of dictionaries. The first one is a 

data-driven dictionary learning, namely the non-negative matrix factorization (NMF) 

[2] already used in paper [1]. PCA is another example of such unsupervised scheme. 

The second dictionary is the curvelets frame [3], which atoms are fixed beforehand. 

Typical representatives of such a dictionary are provided by the Fourier basis and 

other wavelets base or frames.  
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For a better understanding of our problematic we describe the vibration analysis and 

the data in Section 2. The two kinds of dictionaries are defined in Section 3. Finally in 

Section 4, we present some results and draw conclusions. 

2 Vibration analysis and data 

Vibrations give multiple information concerning the different elements of the engine. 

Vibration analysis consists in investigating these vibrations data. Those data are 

generally temporal signals acquired by two accelerometers and subject to noise. 

Several studies analyze these signals to identify potential anomalies in the system [4].  

 In the test bench, two signals are acquired, one during the acceleration phase 

and the second during the deceleration. Indeed, unusual behaviors of the engine may 

be detected more clearly in non-stationary phases. In our study, we don’t use the raw 

signals but their representation into spectrograms. It consists in the concatenation of 

short time Fourier transform applied on small temporal windows. The x-axis 

corresponds to time and the y-axis to frequencies.  

 Modern engines are characterized by two shafts, the high-pressure shaft with 

rotation speed denoted N2 and the low-pressure shaft with rotation speed denoted N1. 

The relation between the two shaft speeds is variable. A sampling of the spectrogram 

in one of these two shaft speeds (we are working on continuous accelerations or 

decelerations) instead of the time leads to a better visualization of the vibrations 

sources. Each vibration source related to the shaft used for the sampling is a straight 

line (Figure 1), vibrations sources of the other shaft are represented by curves.  

 
Fig. 1 : Vibrations spectrogram of a damaged engine sampled in N2 with a zoom of the patch 

containing the damage signatures 

 This representation is high dimensional and the relevant information related to a 

damage consists only in a tiny part of the data (Figure 1). Most of the information 

contained in the spectrogram is noise and expected vibrations signatures. Moreover, 

since the studied engines come directly from the production line, the number of 

abnormal engines is extremely low.  

 For these reasons, a representation of the spectrogram in a more suitable domain 

is needed to perform automatic analysis.  

3 Decomposition over a dictionary 

Experts visually analyze spectrograms by looking successively at different ranges of 

frequencies. We adapt this approach by subdividing the spectrograms into squared 

patches, each defined by a range of frequencies and shaft speeds N2. This subdivision 
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allows to accelerate the algorithm and to perform simultaneous analysis on different 

patches. Another advantage is the localization of the abnormal signature in the 

spectrogram. Ideally, only patches containing abnormal signatures trigger an alarm. 

Moreover, this subdivision can lead to a detection process based on multiple test.  

3.1 Data-driven dictionary – Non-negative matrix factorization 

3.1.1 Non-negative matrix factorization (NMF) 

In this first approach, the dictionary and the representations are learnt from the 

database. In our study, we use the non-negative matrix factorization (NMF) [2] to 

learn the dictionary. This method consists in the decomposition of a positive matrix 𝑉 

into the product of two positives matrices 𝑊 and 𝐻. The following optimization 

problem summarizes it:  

(𝑊∗, 𝐻∗) =  

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝑊 > 0, 𝐻 > 0
‖𝑉 − 𝑊𝐻‖2

2  𝑠𝑡 ∀𝑖, ‖𝑊(. , 𝑖)‖2
2 = 1 

with 𝑊(. , 𝑖) the columns of 𝑊. W represents the dictionary and H the coefficients. V 

is a matrix where each column represents a spectrogram for a given engine. For more 

details, we refer to our previous study using this approach in paper [1].   

3.1.2 Anomaly scores based on the NMF representation 

Various scores allow to compare the different spectrograms in order to discriminate 

the patches containing some signature of damage. The dictionary W of the NMF is 

learnt on a database Dmodel containing patches without such signatures.  

 These scores (Table 1) are explained in [1], we refer to this article for more 

details. It consists in the distance to nearest neighbor spectrogram (NMF dnn), the 

Mahalanobis distance (NMF Mahal) and the reconstruction error (NMF RE).  

Scores (Y) NMF dnn NMF Mahal NMF RE 

Formula min
𝑋 ∈ D𝑚𝑜𝑑𝑒𝑙

‖𝐻𝑌 − 𝐻𝑋‖2
2 (𝐻𝑌 − 𝐻̅)𝑇Σ−1(𝐻𝑌 − 𝐻) ‖𝑌 − 𝑊𝐻𝑌‖2

2 

Table 1: Anomaly scores for the NMF representation 

𝐻𝑋 refers to the representation in the dictionary of spectrogram X, 𝐻 and Σ are 

respectively the mean and the covariance of the coefficients learnt on safe engines. 

3.2 Non adaptive dictionary – Curvelet transform 

The curvelets are chosen as a way to represent the spectrograms. This choice is based 

on two facts. The first one is the perception of vibrations as curves in the 

spectrogram; the second one is the efficiency of the curvelets to represent curves with 

a small number of coefficients. We only give here the main elements to understand 

how the curvelets work. For more precision, we refer to [3]. 

3.2.1 Curvelet transform 

The curvelet transform [3] is based on the ridgelet transform [5], which allows the 

characterization of linear singularities. The ridgelet coefficients are indexed by three 

parameters: the scale, the localization and the orientation, so are the curvelet 

coefficients. The curvelet coefficients are then in a way local. 
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 However, the vibrations are represented by curves in the spectrogram, hence the 

ridgelet transform is not sufficient to characterize the vibrations; but a curve can be 

approximated by a succession of small straight lines. Therefore by applying the 

ridgelet transform on dyadic squares at fine scale, it is possible to characterize a 

curve. This is the idea on which the curvelet transform is based.  

 For the curvelet transform, the orthonormal ridgelets [6] are used. The 

construction of the curvelet transform is based on the process in figure 2.  

 
Fig. 2 : Construction of the curvelet transform and its inverse 

 With this construction, the curvelet transform is invertible and respect the 

Parseval relation. 

3.2.2 Anomaly scores based on the curvelet transform 

Most of the coefficients of the curvelet transform applied to the spectrograms have 

low values. We set up a threshold on the coefficients to keep the 10% largest ones. 

This threshold gives a good reconstruction with a minimal number of coefficients.  

 

Distance to nearest neighbor spectrogram in the coefficients domain (Curvelets dnn) 

This score computes the minimal distance between the representation of the 

spectrogram and the representation in the database Dmodel. 
𝑠𝑐𝑜𝑟𝑒𝑑𝑛𝑛(𝑌) =  min

𝑋 ∈ 𝐷𝑚𝑜𝑑𝑒𝑙

‖𝑇𝑌 − 𝑇𝑋‖2
2 

TX and TY correspond to the curvelet transform of respectively spectrograms X and Y.  

 

Reconstruction error (Curvelets RE) 

In order to learn the structure of normal spectrogram, we use the locality of the 

curvelets by learning the support of the coefficients of the spectrogram.  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖 = {𝑖𝑛𝑑𝑒𝑥 | 𝑇𝑖(𝑖𝑛𝑑𝑒𝑥) ≠ 0} 

We define then the global support of the learning database 𝐷𝑚𝑜𝑑𝑒𝑙  by :  

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  ⋃ {𝑖𝑛𝑑𝑒𝑥 | ∑ 𝕀{𝑖𝑛𝑑𝑒𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖}

𝑖 ∈ 𝐷𝑚𝑜𝑑𝑒𝑙

≥ 𝑄%|𝐷𝑚𝑜𝑑𝑒𝑙|}

𝑖𝑛𝑑𝑒𝑥

  (1) 

We conserve the Q% indices appearing in the majority of spectrograms. This support 

is learnt on normal spectrograms, so it characterizes only normal behaviors. 

The reconstruction error compares the spectrogram with its reconstruction restricted 

to the support. 

𝑠𝑐𝑜𝑟𝑒𝑅𝐸(𝑌) = ‖𝑌 − 𝑇|𝑠𝑢𝑝𝑝𝑜𝑟𝑡
−1 (𝑇𝑌)‖

2

2
 

with 𝑇|𝑠𝑢𝑝𝑝𝑜𝑟𝑡
−1 (. )  the restriction of the inverse curvelet transform to the support (1). 
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4 Experimentations 

4.1 Probability of anomaly 

The scores of the methods defined above have various orders of magnitude. In order 

to compare them, we compute the probability of anomaly. For this purpose, we 

compute the different anomaly scores on another set Dfit with no damaged engines. 

Dmodel and Dfit are disjoints and define the learning dataset Dlearning. A Gamma 

distribution representing the normal behaviors of the scores is fitted on each score. 

This distribution is chosen empirically and approved by a Kolmogorov-Smirnoff test. 

We consider now a third set Dtest, with Dlearning ∩ Dtest = ∅. The different 

anomaly scores are also computed on this set. We perform then a statistical test in 

order to accept or reject the hypothesis H0 : “The studied engine has no damage”. The 

result of this test is determined by the p-value, the probability of wrongly rejecting the 

null hypothesis under its probability. The lower this value, the higher the suspicion on 

the engine. Under the null hypothesis, the score is assumed to be distributed as the 

estimated Gamma distribution, and the p-value writes  

𝑝𝑣𝑎𝑙𝑢𝑒(𝑌) =  ℙ(𝑍 > 𝑠𝑐𝑜𝑟𝑒(𝑌)) =  1 − 𝐹𝑍(𝑠𝑐𝑜𝑟𝑒(𝑌)) 

with Z a random variable following the estimated Gamma distribution, 𝐹𝑍 its 

distribution function and 𝑠𝑐𝑜𝑟𝑒(. ) is any of the anomaly scores defined above.  

4.2 Results 

Our database contains 564 engines among which one engine is damaged (some zones 

contain abnormal signatures) and a second shows corrupt data (the whole spectrogram 

is abnormal). These 2 engines and 48 normal ones form the test database Dtest. 
 In order to verify the consistency of our method, we randomly select a hundred 

times, among the learning database 𝐷𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 400 engines that will take part of the 

learning of the model 𝐷𝑚𝑜𝑑𝑒𝑙  and 114 engines used for the distribution Dproba.  
Scores Normal engines Damaged engine Corrupt data engine 

NMF dnn 0.55 ± 0.07 (2.25 ± 0.13) × 10
-9

 (4.4 ± 5.0) × 10
-3

 

NMF mahal 0.57 ± 0.06 (6.03 ± 0.6) × 10
-11

 (1.06 ± 1.7) × 10
-4

 

NMF RE 0.52 ± 0,03 < 10-16 (2.12 ± 2.66) × 10-4 

Curvelets dnn 0.54 ± 0.03 < 10-16 (1.05 ± 1.86) × 10-4 

Curvelets RE 0.57 ± 0.03 < 10-16 < 10-16 

Table 2: Mean p-values of the engines in Dtest on a patch [256 x 256] containing an abnormal 

signature. The normal engines correspond to the mean of the safe engines in Dtest 

Scores Normal engines Damaged engine Corrupt data engine 

NMF dnn 0.57 ± 0.09 0.5 ± 0.11 0.06 ± 0.03 

NMF mahal 0.5 ± 0.09 0.29 ± 0.09 0.01 ± 0.01 

NMF RE 0.49 ± 0.04 0.34 ± 0.05 (1.3 ± 1.2) × 10-3 

Curvelets dnn 0.53 ± 0.03 0.51 ± 0.07 (1.7 ± 1.6) × 10-3 

Curvelets RE 0.44 ± 0.03 0.27 ± 0.04 (1.2 ± 4.42) × 10
-11

 

Table 3: Mean p-values of the Dtest engines on a patch [256 x 256] without abnormal signatures. 
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 Table 2 shows that the damaged engine is quite well detected and rejected with 

p-value of order at least 10
-3 

for every method in the zone containing the signature. 

Therefore using another representation of the normal spectrogram vibrations enables 

the detection of some signatures. However, the results for the corrupt data engine are 

variable between the different methods. We can see that the reconstruction error 

applied with the curvelets provides p-values lower than the other methods.  This 

difference is due to the fact that by learning the support of the curvelet coefficients, 

we learn the structure of the normal spectrogram. This structure is not present in the 

corrupt spectrogram, which leads to a higher score.  

 Table 3 gives the results in a patch without abnormal signature. The damaged 

engine is no more detected in this patch whereas the corrupt data engine is still 

rejected. The reconstruction error applied to the curvelets still discriminates it with 

higher performance than the other methods.  

5 Conclusion 

Representing a spectrogram in a dictionary allows to discriminate damaged engines. 

In this paper, we tested two types of dictionaries with anomaly scores based on them, 

the NMF and the curvelets. The two methods detect the damaged engine. The fixed 

dictionary representation combined with a data-driven selection of some atoms gives 

the best results. The selection of a support for the inverse curvelet transform accounts 

to learn the structure of the different lines in the spectrogram.  

 The subdivision into patches enables detection only in a zone with an abnormal 

signature leading to a rough localization of the signature in the spectrogram.   

 This type of algorithm for the detection of anomaly in spectrograms shows some 

encouraging results. Further analyzes of the process and more advanced comparisons 

are required. Ongoing works consist in the detection of weak signatures on shifted 

windows and on a detection procedure based on multiple testing theory.  
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