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Abstract. Deep convolution networks are extended with an oscillatory
phase dynamics and recurrent couplings that are based on convolution and
deconvolution. Moreover, top-down modulation is included that enforces
the dynamical selection and grouping of features of the recognized object
into assemblies based on temporal coherence. With respect to image pro-
cessing, it is demonstrated how the combination of these mechanisms allow
for the segmentation of the parts of the objects that are relevant for its
classification.

1 Introduction

In a recent revival of multi-layered convolutional neural networks deep learn-
ing has successfully been shown to form the state-of-the-art in many tasks such
as image-based object classification [1]. Comparison with the brain’s informa-
tion processing revealed that DL even competes with the representational per-
formance of primate’s IT cortex [2]. It may be expected that superior vision
systems may be constructed by extending the deep architecture (DA) obtained
from DL with properties that are still unique to the neurophysiological systems.
Here, correspondingly, we begin to extend the DA through including two as-
pects that are essential for the biological workings: recurrences and oscillations.
Moreover, we include a top-down modulated dynamics that is inspired by the
construction of saliency maps [3] and demonstrate how the combination of these
mechanisms allows for the segmentation of parts of an object in a visual scene
that are relevant for the classification of this object. This realizes the selection
and dynamical binding of features of an object into assemblies (see [4] for an
introduction to the concepts of binding and temporal assembly formation) in the
context of deep neural architectures.

2 Deep Networks with Recurrences and Oscillations

Basing our approach on a deep learning architecture which was used, for example,
by Krishevsky et al. [1], we assume that the network has H hidden layers of con-
volutional type and two additional final layers that are fully connected. Each
hidden layer h has Fh feature maps. The final output is given by a softmax
procedure. The output at each layer � = 1, 2, ..., L (L = H + 2) is given by

y�a�
= δ�a�

· g�
(

x�a�

)

with x�a�
= β�

f� +
∑

a�−1

{W (�−1)→�}a�
a�−1

y�−1
a�−1

. (1)
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where �−1 = 0 refers to the input image with f0 channels. Here, we have chosen
a short form for the indices where

a� ↔ (f�, n�,m�) , (2)

that is, the a� stand for the index f� = 1, ..., F� of the feature maps (FH+1 =
FH+2 = 1) and the indices n�,m� that describe the two-dimensional structure of
the feature maps (and of the input images). The δ�a�

∈ {0, 1} describe the results
of max-pooling, a kind of local winner-take-all competition. In the following, to
keep the equations simple, we assume that the set of indices a� is reduced to the
indices of the units that are selected by the max-pooling procedure.

The β and W in eq. 1 describe biases and coupling weights, respectively. For
� = 1, .., H the weights are convolutional, i.e., in terms of the detailed indices
the weights W may be related to filters K through weight-sharing:

{W (�−1)→�}f�m�n�

f�−1m�−1n�−1
= Kf�

f�−1(m�−m�−1)(n�−n�−1)
(3)

For � = 1, .., L− 1 the signal functions g� are defined through g�(x) = x if x ≥ 0
and g�(x) = 0 if x < 0 (“ReLU”). The final layer uses a softmax output: gL(x) =
exp(x)/X where X =

∑

pL
exp(xLpL

); see also the additional remarks in section
3. For the results presented in the next section, we use the implementation and
pre-learned weights given by Chatfield et al. [8]; this reference may therefore be
consulted for any further details.

As stated in the introduction, motivated by what constitutes neural process-
ing in the brain, we now want to extend the above standard architecture by
including recurrences, oscillations, and (in the next section) top-down modu-
lation of the dynamics. The following discussion is intended to be a first step
into this direction. Here, we restrict this step to oscillatory dynamics in the
first layer. Correspondingly, the recurrence is between the first two hidden lay-
ers. (However, the complete network is involved when including the top-down
modulations in the next section.) This is sufficient to present some of the fun-
damental aspects that may also be applicable to a more complete solution.

To describe the oscillatory dynamics in layer 1 and make the relation to
earlier oscillatory models particularly obvious, let us choose different notations:

a1 = n , a2 = p , y1a1
= Vn , {W 1→2} = ξ . (4)

For the oscillatory dynamics, we introduce phases θn with the dynamics given
by

dθn
dt

= ω0,n + ω1,nVn+ (5)

κ

N

∑

m

hnm [sin (α) cos (θm − θn) + cos (α) sin (θm − θn)]Vm ,

where ω0,n and ω1,n are intrinsic and shear frequencies, respectively, N is the
size of the filters Kf2 , κ ≥ 0 and 0 ≤ α ≤ π/4 are the coupling constant and
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Fig. 1: Architecture of the discussed network type. Two kinds of recurrences are
implemented. First, there is dynamical bottom-up (convolution given by eq. 7)
and top-down (deconvolution given by eq. 8) processing between hidden layers
� = 1 and � = 2. Second, there is a top-down modulation of the dynamics as
described in section 3 (eq. 9) . The three dots indicate feed-forward (bottom-up)
processing through layers � = 3, ..., L−1, while the arrow indicates the recurrent
top-down modulation according to the “relevances” given by eq. 9.

the constant acceleration phase described in [5, 6, 7]. Of the two trigonometric
terms, the latter implies a tendency to synchronize the oscillators and therefore
describes a binding process, whereas the first term (present only for α �= 0) coun-
teracts this synchronization to avoid a complete synchronization of the system
in a manner that introduces a competition for coherence and selective binding
[5, 6].

The crucial next step is to define the couplings hnm appropriately. Studies
of the learned filters suggest that these filters describe patterns [3, 9] and so it
is a natural (though unusual) step to associate a pattern recognizing dynamics
with these patterns through identifying

hnm =
∑

p

λpη
p
nξ

p
n , (6)

where λp is a quantity weighting these patterns and ηpn = 0 if ξpn = 0 and
ηpn = ξpn/|ξpn| otherwise (the rationale behind using this normalization is given
below). The dynamics may then be implemented as a convolution followed by a
kind of “normalized deconvolution”. With the notations of eqs. 4 the convolution
with ξ (= W 1→2) takes the following form, describing responses in layer 2 in
terms of quantities Rp,Θp that have their analog in the corresponding quantities
defined in [5, 6]:

Rp exp(iΘp) =
1

N

∑

n

ξpnVn exp(iθn) . (7)

It is then obvious that eq. 5 with eq. 6 describes a “normalized deconvolution”
resulting in the phase dynamics given by

dθn
dt

= ω0,n + ω1,nVn+ (8)

κ

P
∑

p=1

λpηpnR
p [sin (α) cos (Θp − θn) + cos (α) sin (Θp − θn)]
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(the notion of “normalized” refers to using η instead of ξ). The notations in this
section have been used to make the connection between the deep architecture
of equation eq. 1 and the results obtained in [5, 6] as explicit as possible. Inci-
dentally, the reason for using η instead of ξ in eq. 6 is that it allows to apply
the pure pattern frequency arguments from [5] also with respect to eq. 8. In the
next section, we use the connection to this earlier work and discuss (and extend)
the deep oscillatory dynamics described with eqs. 5 and 8.

Note at this point that the strategy of using static amplitudes but dynamical
phases as a first step towards a more complete dynamics was also chosen by
Finger and König [11].

3 Top-Down Modulated Dynamics and Segmentation

Due to the relation with the earlier work on oscillatory pattern recognition made
explicit in the foregoing section, we may now apply several of the results obtained
in [5, 6] (see also [7]) and expect that a competition for coherence together
with binding based on temporal coherence arises with the phase dynamics given
by eq. 8; see these references for introductions to the properties of oscillatory
networks needed for the following discussion. Here, we want to demonstrate that
this competition allows for the segmentation of object parts that are relevant for
a classification.

Although we include oscillatory dynamics only at hidden layer � = 1, we need
to use the full depth (that is, all layers) of the network for the following top-down
modification of the dynamics. As each “pattern” p (where p now rather refers
to features and positions; see section 2) is strengthened in the competition for
coherence if its weight λp is increased, we allow for a top-down modification of
the dynamics in eq. 8 by choosing the following values that are determined by
top-down processing (in a backpropagation-like manner) from the final layer:

λp(I) = Z−1 · abs
(

∂xLaL

∂x2p

)

inputimage=I

(“relevances”) . (9)

(The final step in processing back to layer 1 is completed with eq. 8.) Note that
the final two layers, � = H + 1 and � = H + 2 = L, are fully connected and do
not reflect the two-dimensional geometry of the images [1, 8]. We may, however,
keep the notation of section 2 by setting nL = mL = 1 and letting fL = 1, ...,M
index the M different classification categories. The particular fL used for the
aL in eq. 9 is the one that achieves the highest score yLaL

when processing the
inputimage I. Thus, the chosen fL is the index of the obtained classification.
The normalization is given by Z = maxp{abs(∂xLaL

/∂x2p)}.
Adapting an argument given by Simonyan et al. [3] for the construction of

saliency maps it may be seen that the gradient term in eq. 9 serves to quan-
tify the strength of the “patterns” p (that is, features f2 present at positions
n2,m2) in the competition for coherence according to their relevance for the
obtained classification. In the next section, we demonstrate that this top-down
modulation results in a competition for coherence that lets the phase dynamics
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Fig. 2: (A) Input images and (B) class specific saliency maps [3] obtained for the
classes “Alaskan malamute”, “taxi” and “red panda”. (C and D) No top-down
modulation, λp = 1 for all p. (E and F) With top-down modulation, that is,
λp given by eq. 9. (C to F) Notice that these panels are obtained by projecting
the phase values in layer 1 back to the pixels of the input layer (including an
appropriate unpooling procedure). (C and E) the phase maps as described in
section 4. (D and F) The resulting segmentations. In case (F) the top-down
modulation implies a binding of features into assemblies, corresponding to parts
of the objects that are relevant for the classification.

imply a segmentation of (relevant parts of the) objects that are recognized by
the network (that is, classified in the final layer).

4 Results

The following results (figure 2) were based on the pre-trained model given by
Chadfield et al. [8] on the ILSVRC-12 data set (VGG-model); see this reference
for details. We also confirmed the functioning of the described mechanisms with
other networks and data sets: we trained a network as given by [1] (AlexNet),
also on the ILSVRC-12 data set, and two networks that were inspired by the
architecture of [1] on the CIFAR-10 dataset. All simulations used two Nvidia
970-GTX graphics processing units and Torch7 [10].

Given the three example images shown in figure 2A, the static amplitude
values and phase dynamics is given by eqs. 1 and 5, respectively, where the
latter is equivalent to a convolution followed by a deconvolution described with,
corrrespondingly, eqs. 7 and 8. The parameters are chosen ω0,n = ω1,n = 1 for
all n, κ = 30, α = π/4, and N = 5 · 5 · 64 = 1600 is the size of the filters Kf2 .
An Euler discretization is used with a time step dt = 0.01. For the simulation
900 time steps are computed. Panels C to F of figure 2 refer to the situation at
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the end of the simulated time period.
As a result of the competition for coherence, a binding process like the one

described in [6] occurs. We find that the winning “patterns” (understood as de-
scribed in section 2) phase-lock to each other at higher phase-velocity compared
to the non-winning units of the network. In that respect, we find the top-down
modulation to be crucial; compare the panels C and D with the panels E and
F in figure 2. We adopted a simple procedure to read out these assemblies.
Starting with the initial phases of the θn randomly distributed between 0 and
2π, we determined their values at the end of the simulated time period (without
applying the modulo 2π operation). The higher phase-velocity was indicated by
larger values of these final phase values; these are displayed in figure 2C and 2E.
The segmentation is then achieved through introducing a threshold of 60% of
the maximal phase and keep only pixels that have values above this threshold.

In summary, over the course of the dynamic system's time evolution the
described oscillatory dynamics gives rise to communication and propagation of
information in a bottom-up and top-down fashion, resulting in lateral binding of
features into assemblies based on temporal coherence. Going beyond the present
discussion, future work may aim at a more complete machinery by extending the
recurrent oscillatory dynamics to the complete set of layers.
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