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Abstract. Convolutional Neural Networks are often used for computer
vision solutions, because of their inherent modeling of the translation in-
variance in images. In this paper, we propose a new module to model
rotation and scaling invariances in images. To do this, we rely on the
chirp-Z transform to perform the desired translation, rotation and scaling
in the frequency domain. This approach has the benefit that it scales well
and that it is differentiable because of the computationally cheap sinc-
interpolation.

1 Introduction

As a general principle in machine learning, models will often perform better
when you include more a priori knowledge. One form of a priori knowledge often
available on datasets, is whether there are data manipulations under which the
required output of the model stays the same. For instance, you could think
of small translations of the images for computer vision applications, or small
delays in audio for speech recognition. A common approach to incorporate this
knowledge in the model, is by performing data augmentation using these known
invariances [1], which can be done both during training and evaluation of the
model.

Another way of doing so, is by making the model inherently insensitive to
known invariances in the data. An example of this approach are convolutional
neural networks with max pooling. Because of the inherent properties of this
model, the classification will be robust against small translations in the image.
This property is one of the main reasons for their effectiveness in image classifi-
cation [2].

Therefore, when we competed in Kaggle’s National Data Science Bowl 2014,
where the goal was to classify images of plankton, we wanted to improve our
performance by including these known invariances. In the case of the dataset
of the competition, there was full rotational and scale invariance. We tried
various approaches to incorporate this invariance into our model, one of which
is discussed in this paper. Earlier preliminary results were posted in March 2015
when publishing our winning solution online1.

∗The research leading to these results has received funding from the European Commission
(EC) Human Brain Project under grant agreement No 604102, and from the Agency for In-
novation by Science and Technology in Flanders (IWT). The Tesla K40 used for this research
was donated by the NVIDIA Corporation.

1http://benanne.github.io/2015/03/17/plankton.html
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1.1 Related work

Since then, various papers have already been published exploring the idea of
using affine transforms as module in a neural network [3, 4]. Currently, these
methods rely on using a bilinear transform for performing the interpolation step
in the image transform. In this paper, we present the original approach we
developed before these publications, which uses the chirp-Z transform to perform
both the coordinate transform and interpolate the image.

2 The Chirp-Z Transform

The chirp-Z transform (CZT) is a generalization of the more known discrete
Fourier transform (DFT). Seen from the Z-transform point of view, you could
say that while the DFT samples the Z-plane at uniformly-spaced points on the
unit circle, the chirp-Z transform samples along spiral arcs in the Z-plane. Or
alternatively from the Laplace transform point of view, while the DFT samples
along the imaginary axis in the S-plane, the CZT samples along straight lines in
the S-plane [5].

Concretely, the chirp-Z transform is defined by the following equation:

CZT(xn) =
N−1∑
n=0

xnA
−nWnk.

Here, A is the starting point of the sampling, and W is a complex scalar describ-
ing the complex ratio between points on the sampling contour. When A = 1

and W = e
−i2π
N this reduces to the standard DFT.

The 2-dimensional chirp-Z transform is an extension of this idea onto 2 di-
mensional images in exactly the same way the DFT is extended. In the case of
the DFT, this allows for a fast algorithm to perform convolutions [6]. Similarly,
the chirp-Z transform has some interesting properties as well. It can for instance
be used to perform translations, scaling and even rotations on images [7]. The
resulting images are perfect interpolations of the input image, so if the input
image is bandwith-limited, the resulting image will be a perfect reconstruction.
This makes this technique interesting when applied on images which have been
reconstructed from the frequency domain, which is for instance the case in MRI-
imaging [7]. Also, perfect interpolation implies no information is lost, which
allows for repeated manipulation of the same image without blurring [8].

Additionally, since the chirp-Z transform is linear, it can be part of a gradient
descent method and can be evaluated fast in both the forward and the backward
phase. This makes it a good candidate for use in a deep neural network.

3 Transform of an Image Using the Chirp-Z Transform

As described in the paper by Myagotin [8], we want to resample our image on
the points (p∆, q∆) where p and q are the discrete indexes of the pixel, and ∆
is the distance between the neighbouring pixels.
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Then, the location (xpq, ypq) of the sampling point on the original image are
given by:

xpq = x0 + cos θ(p∆− x0)− sin θ(q∆− y0)

ypq = y0 + sin θ(p∆− x0) + cos θ(q∆− y0)

And correspondingly, now we want to sample our original image in the point
gpq by reconstructing from the chirp-Z domain. If we follow the definition for
the 2 dimensional chirp-Z transform from, namely

Zpq(h, α, β) =
N−1∑
l=0

N−1∑
m=0

hlme
−2πiα(lp+mq)e−2πiβ(mp−lq) (1)

the value of the reconstructed point gpq is given by [5]:

gpq = e−πi((cos θ+sin θ)(p∆−x0)+(cos θ−sin θ)(q∆−y0)) Zpq(h,
−∆ cos θ

N
,
−∆ sin θ

N
).

Here h is the DFT of the input image shifted such that the center of rotation is
at the origin of the image coordinate system.

This equation is evaluated efficiently using only DFT’s and multiplications [8].
To see how this works, we substitute the exponents in equation 1 as follows:

(lp+mq) = −(q − l)(p−m) + lm+ pq

2(mp− lq) = (q − l)2 − (p−m)2 + (m2 − l2) + (p2 − q2)

and introduce the following three matrices with α = −∆ cos θ
N and β = −∆ sin θ

N

Alm = e−πi(2αlm+β(m2−l2))

Blm = eπi(2αlm+β(m2−l2))

Cpq = e−πi(2αpq−β(p2−q2))

then, it follows that

Zpq = Cpq

N−1∑
l=0

N−1∑
m=0

hlmAlmB(q−l)(p−m).

From which we can find the gpq we are looking for. If we use the circular
convolution operator ‘∗’ and the elementwise Hadamard product ‘◦’, this can be
rewritten to

Z = C ◦ ((h ◦A) ∗B).
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Algorithm 1 Transform image I around (x0, y0) with angle θ and scale ∆

1: a← ∆ cos θ
2: b← ∆ sin θ
3: p, q ← [N/2, ..., N − 1, 0, ..., N/2− 1]
4: r, s← [0, ..., N − 1]
5: Pjk ← exp(πi(2pjx0/N + 2qky0/N − 2apjqk − b(p2

j − q2
k))))

6: Bjk ← exp(πi(2arjsk + b(r2
j − s2

k))
7: D ←IFFT(FFT(FFT(I) ◦ P ) ◦ FFT(B))
8: return |D|/N2

4 The Algorithm

To implement the algorithm, we assume an efficient implementation of the DFT
is available, namely the Fast Fourier Transform (FFT) [9]. We assume the result
of the FFT-method is available in the most common ‘not shifted’ form, namely
with the DC component on the location (0, 0). The forward pass of this algorithm
can therefore be written as described in Algorithm 1.

In this algorithm, all operations are differentiable, and therefore the trans-
form of the image is as well. Sampling the image in a lower resolution can be
done by removing the higher frequencies of FFT(I) before transforming. Since
the goal is often to crop the image and selecting only the important part, the
loss of superfluous information is often beneficial.

This algorithm is as fast as the FFT-transform. This is true both in the
forward and in the backward pass, since the derivative of the FFT-transform to
its input is the IFFT-transform, which is the same as the FFT up to a coefficent.
Therefore the complexity of this transform is O(n2 log n).

5 Experiments

To evaluate this approach, we used the same cluttered MNIST-dataset as was
used to test comparable spatial transform methods [4]. The dataset is created
by placing 3 MNIST digits on a square canvas with a width of 100 pixels. The
first digit is placed by randomly sampling a vertical y position on the canvas.
The horizontal x positions were randomly sampled such that the entire sequence
fits on the canvas and the digits do not overlap. Digits are placed following a
slope sampled from ±45◦ and cluttered by placing 8 patches of 9 by 9 pixels
sampled from the original MNIST digits. The trainset has 60 000 samples for
training, 10 000 for validation and 10 000 for testing.

For evaluation, we made use of 2 different types of networks, which were
implemented using Theano [10] and Lasagne [11]. We used a forward network
approach [3] and a recurrent neural network approach [4]. The setup of these
neural networks are described in Table 1. In these two models, we test four
different approaches.

1. We test the models using the original bilinear interpolation method. With
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FFN-SPN model RNN-SPN
2× 2 maxpool 2× 2 maxpool
3× 3 convolution (20 filters) 3× 3 convolution (20 filters)
2× 2 maxpool 2× 2 maxpool
3× 3 convolution (20 filters) 3× 3 convolution (20 filters)
2× 2 maxpool 2× 2 maxpool
3× 3 convolution (20 filters) 3× 3 convolution (20 filters)
Denselayer (200 units) GRU (256 units)
Denselayer (4 or 6 units) + linear Denselayer (4 or 6 units) + linear
Spatial Transform Layer Spatial Transform Layer
3× 3 convolution (96 filters) 3× 3 convolution (32 filters)
2× 2 maxpool 2× 2 maxpool
Dropout Dropout
3× 3 convolution (96 filters) 3× 3 convolution (32 filters)
2× 2 maxpool 2× 2 maxpool
Dropout Dropout
3× 3 convolution (96 filters) 3× 3 convolution (32 filters)
Dropout Dropout
Denselayer (400 units) Denselayer (400 units)
Denselayer (3 units) + softmax Denselayer (3 units) + softmax

Table 1: The two models used to test our spatial transform layer

this method, there are 6 parameters defining the sampling grid. This allows
all affine transforms.

2. We test the model using a bilinear interpolation method, where no skew
is allowed. Therefore, only rotation, scaling and translation is available.
This means the images are transformed with 4 degrees of freedom.

3. We test using the chirp-Z method explained before.

4. We test these models when no transform or downsampling takes place.

As you may find in Table 2, we found that the use of spatial transformer
networks significantly improves the achieved accuracy on the cluttered MNIST
dataset compared to standard neural networks. Also, we find that our chirp-Z
approach performs similarly to the bilinear approach without skew, being able
to achieve a 1.8% error rate.

6 Conclusion

In this paper, we show it is possible to transform images in a way derivatives can
be calculated to the original images and the parameters. We have shown that
this approach to transforming images works similarly well as the now common
bilinear transform implementation and that they outperform standard convolu-
tional neural networks.
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Cluttered MNIST Sequences
bilinear bilinear no skew chirp-Z no spatial

Model Err. (%) Err. (%) Err. (%) Err. (%)
FFN-SPN d=1 4.4 4.5 5.0 7.8
FFN-SPN d=2 2.0 5.3 3.3 ”
FFN-SPN d=3 2.9 3.6 4.8 ”
RNN-SPN d=1 1.8 4.1 4.1 ”
RNN-SPN d=2 1.5 1.7 1.8 ”
RNN-SPN d=3 1.8 1.5 2.8 ”

Table 2: Per digit error test scores on the cluttered MNIST sequence, d is the
down-sampling factor.

We have shown that using spatial transform layers can considerably improve
performance on problems where the data is found in a part of the image, be-
cause another neural network can learn to find this relevant part autonomously.
This further lowers the requirement for pre-processing in convolutional neural
networks.
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