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Abstract. The increasing availability of implicit feedback datasets has
raised the interest in developing effective collaborative filtering techniques
able to deal asymmetrically with unambiguous positive feedback and am-
biguous negative feedback. In this paper, we propose a principled kernel-
based collaborative filtering method for top-N item recommendation with
implicit feedback. We present an efficient implementation using the linear
kernel, and how to generalize it to other kernels preserving efficiency. We
compare our method with the state-of-the-art algorithm on the Million
Songs Dataset achieving an execution about 5 time faster, while having
comparable effectiveness.

1 Introduction

Collaborative filtering (CF) techniques can make recommendation to a user ex-
ploiting information provided by similar users. The typical CF setting con-
sists of a set U of n users, a set I of m items, and the so-called rating matrix
R = {rui} ∈ Rn×m. In this paper we focus on implicit feedback, and so we
assume binary ratings, rui ∈ {0, 1}, where rui = 1 means that user u interacted
with item i (unambiguous feedback) and rui = 0 means there is not evidence
that user u interacted with item i (ambiguous feedback). Unlike traditional CF
algorithms for explicit feedback, where one wants to accurately predict ratings
for each unseen user-item pair, the goal in the implicit feedback domain is to
generate a top-N ranking of items. Top-N recommendation with implicit feed-
back was the subject of one recent remarkable challenge organized by Kaggle,
the Million Songs Dataset challenge [1], that was defined on a very large dataset
with roughly 1.1M users and 380K items (i.e., songs) for a total of about 50M
ratings. The winning solution described in [2] (here called MSDW) is an ex-
tension of the well known item-based nearest-neighbors (NN) algorithm [3] that
uses an asymmetric similarity measure, called asymmetric cosine. Besides its
outstanding performance in terms of mAP@500, the MSD winning solution is
also easily scalable to very large datasets. However, one drawback of this solu-
tion is that it is not theoretically well founded. More recently, a new principled
algorithm for CF (CF-OMD) which explicitly optimizes the AUC has been pro-
posed with very nice performances on the MovieLens dataset [4]. Unfortunately,
this last algorithm cannot be promptly applied to large datasets as it requires
the optimization of n quadratic problems each one defined on m variables.

∗This work was supported by the University of Padova under the strategic project BIOIN-
FOGEN.
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Here, we propose a variant of the CF-OMD algorithm that makes it applicable
to very large datasets achieving an execution time about 5 times faster than the
MSDW algorithm on the MSD dataset. Secondly, we present strategies that
allow the same algorithm to be applied with quite general kernels without loss
in efficiency.

2 CF-OMD (Optimization of the Margin Distribution)

In this section we present a CF algorithm, called CF-OMD [4], for top-N recom-
mendation inspired by preference learning, and designed to explicitly maximize
the AUC (Area Under the ROC Curve) . Consider the normalized rating matrix
X ∈ Rn×m, with columns xi = ri/‖ri‖ and let Iu be the set of items rated by
the user u. Let also define the probability distribution over the positive and
negative items for u as Γu = {αu ∈ Rm

+ |
∑

i∈Iu αui = 1,
∑

i/∈Iu αui = 1}. Then,
for each test user, the following convex optimization problem has to be solved:

α∗u = argmin
αu∈Γu

α>u
(
YuX>XYu + Λ

)
αu, (1)

where Yu is a diagonal matrix, Yu = diag(yu), such that yui = 1 if i ∈ Iu, −1
otherwise, and Λ is a diagonal matrix such that Λii = λp if i ∈ Iu, otherwise
Λii = λn, where λp and λn are regularization parameters. These parameters
balance the contribution of the unambiguous ratings (λp) and the ambiguous
ones (λn). Once solved the optimization problem the scores of the user u is
calculated by r̂u = X>XYuα

∗
u, and the recommendation is made accordingly.

Although this algorithm has shown state-of-the-art results in terms of AUC,
it is not suitable to deal with large dataset. In fact, let assume that each op-
timization problem can be solved by an algorithm with a complexity quadratic
on the number of parameters. Then the global complexity would be O(ntsm

2),
where nts is the number of users in the test set, and for the MSD it would be
O(1019).

3 Efficient CF-OMD

Analyzing the results reported in [4], the authors noticed that high values of λn
did not particularly affect the results, because it tends to flatten the contribution
of the ambiguous negative feedbacks toward the average, mitigating the relevance
of noisy information.

In CF contexts the data sparsity is particularly high, this means, on average,
that the number of ambiguous negative feedbacks is orders of magnitude greater
than the number of positive feedbacks. Formally, given a user u, let m+

u = |Iu|
and m−u = |I \ Iu| then m = m−u + m+

u , where m+
u � m−u , and generally

O(m) = O(m−u ).
On the basis of this observation, we can simplify the optimization problem

(1), by fixing λn = +∞, which means that ∀i /∈ Iu, αui = 1/m−u :

α∗u+ = argmin
αu+∈Γu

α>u+X>u+Xu+αu+ + λp‖αu+‖2 − 2α>u+X>u+µ−u , (2)
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where αu+ are the probabilities associated with the positive items, Xu+ is the
sub-matrix of X containing only the columns corresponding to the positive items
and µ−u = (

∑
i/∈Iu xi)/m

−
u is the centroid of the convex hull spanned by the

negative items. The number of parameters in (2) is m+
u and hence the complexity

from O(ntsm
2) is dropped to O(ntsm

+
u
2
), where m+

u = E[|Iu|]. In MSD m+
u ≈

47.46 which leads to a complexity O(108).

3.1 Implementation trick

Notwithstanding the huge improvement in terms of complexity, a näıve imple-
mentation would have an additional cost due to the calculation of µ−u . For all
users in the test set the cost would be O(ntsnm

−
u ), where m−u = E[|I \ Iu|], and

it can be approximated with O(ntsnm).
To overcome this bottleneck, we propose an efficient incremental way of cal-

culating µ−u . Consider the mean over all items µ = 1
m

∑
i∈I xi, then, for a given

user u, we can express µ−u = 1
m−

u

(
m · µ−

∑
i∈Iu xi

)
. From a computational

point of view, it is sufficient to compute the sum
∑

i∈I xi once (i.e., m · µ) and
then, for every µ−u , subtract the sum of the positive items. Using this simple
trick, the overall complexity drops to O(nm) +O(n2tsm

+
u ).

In the experimental section we successfully applied this algorithm to the
MSD achieving competitive results against the state-of-the-art method but with
higher efficiency.

4 Kernelized CF-OMD

The method proposed in Section 3, can be seen as a particular case of a kernel
method. In fact, X>u+Xu+ is a kernel matrix, let call it Ku+ with the correspond-
ing (linear) kernel function K : Rn × Rn → R. Given K we can reformulate (2)
as:

α∗u+ = argmin
αu+∈Γu

α>u+Ku+αu+ + λp‖αu+‖2 − 2α>u+qu, (3)

where qu : qui = 1
m−

u

∑
j /∈Iu K(xi,xj).

Actually, inside the optimization problem (3) we can plug any kernel function.
We will refer to this method as CF-KOMD. Generally speaking, the application
of kernel methods on huge dataset have an intractable computational complexity.
Without any shrewdness the proposed method would not be applicable because
of the computational cost of the kernel matrix and qu.

An important observation is that the complexity is strictly connected with the
sparsity of the kernel matrix which is, unfortunately, commonly dense. However,
we can leverage on an important result to keep the kernel as sparse as possible
without changing the solution of CF-KOMD. In [5] Karnick et al. observed that:
if a function f : R → R admits a Maclaurin expansion with only nonnegative
coefficients i.e.,

∑∞
n=0 anx

n, an ≥ 0, then it defines a positive definite kernel as
K : (x,y) 7→ f(〈x,y〉). As emphasized in [5], many kernels used in practice [6]
satisfy the above-mentioned condition.
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Consider the application of this result on the polynomial kernel Kp : (x,y) 7→
(〈x,y〉+ c)d where c ∈ R and d ∈ N. Kp can be defined as:

Kp(x,y) =
d∑

i=0

(
d

i

)
c(d−i)〈x,y〉i. (4)

When the polynomial is not homogeneous (i.e., c 6= 0) the kernel matrix induced
by Kp is dense due to the zero degree term (i.e., cd) which is added to all entries.
Since adding a constant to a whole matrix means a space translation, it can be
demonstrated that this operation does not affect the margin in CF-KOMD. For
this reason we can “sparsify” the kernel by removing the factor cd obtaining a
kernel matrix whose sparsity depends on the distribution of the input data.

Let K = X>X be a kernel matrix and let P(Kij 6= 0) be the probability
that the entry Kij is not zero. Given the a-priori probabilities P(xih 6= 0) and
P(xjh 6= 0), we can say that P(Kij 6= 0) = 1 − (1 − P(xih 6= 0) · P(xjh 6= 0))n.
Anytime both xi and xj are popular items, i.e., P(xih 6= 0) and P(xjh 6= 0) are
high, then P(Kij 6= 0) tends to be high as well. On the contrary, when one of
the two vectors represents an unpopular item then the probability P(Kij 6= 0)
goes to zero. In CF contexts this situation is pushed towards the limit since the
popularity distribution generally follows a power low, and this often guarantees
the sparsity of the resulting kernel .

Using the “sparsified” kernel, we can further optimize the complexity by pro-
viding a good approximation of qu that can be computed only once, instead of nts
times. The idea consists in replacing every qui with an estimate of E[K(xi,x)].
Formally, consider, without any loss of generality, a normalized kernel function
K and let the approximation of qu be q̂ s.t. q̂i = 1

m

∑
j∈I K(xi,xj). At each

component of q̂, the approximation error is bounded by
2m+

u

m (see Appendix A),
which is linear on the sparsity of the dataset.

5 Experiments and Results

Experiments have been performed comparing the proposed methods against the
state-of-the-art method on MSD (MSDW) with respect to the ranking quality
and computational performance. We used two datasets: MSD, described in
Section 1, and Movielens, which consists of 3850 users and 2273 items for a total
of 315K ratings. Methods have been compared using the mAP [2] and AUC
measures. All methods have been implemented in Python12. In this section
we will refer to the Efficient CF-OMD with ECF-OMD and to the Kernelized
CF-OMD with CF-K.

5.1 Movielens dataset

The Movielens dataset has been randomly divided into a training set of roughly
250K ratings and a test set of 60K ratings. Since this dataset contains ratings in

1We used CVXOPT package to solve the optimization problem
2The MSDW implementation is available at http://www.math.unipd.it/ aiolli/CODE/MSD/
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the form of a 5 stars preference, we had to convert them into binary ones where
all values greater than 0 are treated as 1. This test aims to show the accuracy
and the computational performance of the proposed methods on a medium size
dataset. Table 1 summarizes the results.

MSDW (α) ECF-OMD (λp) CF-K (λp)
0.15 0.5 0.01 0.1 1 0.1

mAP@100 0.10369 0.11262 0.13172 0.13224 0.13429 0.13505

AUC 0.87542 0.87162 0.89610 0.89619 0.89554 0.89665

Table 1: Ranking accuracy on Movielens dataset using AUC and mAP@100.

We tested MSDW fixing the locality parameter [2] q = 1 and varying the
asymmetric cosine weight α. For ECF-OMD we tried different λp but its effect
is minimal on the final ranking, and for this reason we fixed it during the CF-
K experiment. In this experiment we used the polynomial kernel of degree 2
with c = 1. Results show that both proposed methods have higher AUC and
mAP@100 with a slightly better performance for CF-K. With this dataset all
methods terminate in few seconds.

5.2 MSD

We used MSD as described in the Kaggle challenge3: the training set is composed
by 1M users (plus 10K users as validation set) with all their listening history
and for the rest (i.e., 100K users) only the first half of the history is provided,
while the other half constitutes the test set. In these experiments we fixed the
λp parameter to the best performing one on the Movielens dataset.

Results are presented in Table 2. In this case MSDW maintains its record
performance in terms of mAP@500, while for the AUC all methods have very
good results. This underline the fact that both ECF-OMD and CF-K try to
optimize the AUC rather than the mAP.

MSDW (α, q) ECF-OMD (λp) CF-K (λp)
0.15, 3 0.1 0.1

mAP@500 0.16881 0.16391 0.15967

AUC 0.97342 0.97034 0.97065

Table 2: Ranking accuracy on MSD using AUC and mAP@500.

The computational costs on this dataset are reported in Figure 1.
The results are the average computing time over 1K test users. All methods

run on a machine with 150Gb of RAM and 2 x Eight-Core Intel(R) Xeon(R)
CPU E5-2680 0 @ 2.70GHz. Actually the times in Figure 1 have a constant
overhead due to read operations. Results show that ECF-OMD and CF-K are
almost 5 time faster than MSDW even though they require more RAM to store
the kernel matrix. It is worth to notice that CF-K has a computational time

3https://www.kaggle.com/c/msdchallenge
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Fig. 1: Average computational time in hours for 1K users.

very close to ECF-OMD, and this highlights the positive effects of the complexity
optimization presented in this paper.

A Appendix
A.1 Optimization problem simplification

Let µ−u defined as in Sec.3 and let Xu+ , Xu− be the sub-matrices of X containing only the
columns corresponding, respectively, to the positive and negative items for u. Then, by fixing
λn = +∞, we can simplify (1) as:

α∗u = argmin
αu

‖α>
u+Xu+ − µ−u ‖2 + λp‖αu+‖2

= argmin
αu

‖α>
u+Xu+‖2 − ‖µ−u ‖2 − 2α>

u+X>
u+µ−u + λp‖αu+‖2 = (2)

A.2 Approximation error

Let Kij = K(xi,xj), then:

|q̂i − qui| =

∣∣∣∣∣∣ 1

m

∑
j∈I

Kij −
1

m−u

∑
j /∈Iu

Kij

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

m

∑
j∈Iu

Kij +
∑
j /∈Iu

Kij

− 1

m−u

∑
j /∈Iu

Kij

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

m

∑
j∈Iu

Kij −
m−m−u
m ·m−u

∑
j /∈Iu

Kij

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

m

∑
j∈Iu

Kij

∣∣∣∣∣∣+

∣∣∣∣∣∣m−m
−
u

m ·m−u

∑
j /∈Iu

Kij

∣∣∣∣∣∣
≤

∣∣∣∣∣m+
u

m

∣∣∣∣∣+

∣∣∣∣∣m−m−um ·m−u
m−u

∣∣∣∣∣ ≤ m+
u +m−m−u

m
=

2m+
u

m
.
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