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Abstract. While deep neural nets (DNN’s) achieve impressive perfor-
mance on image recognition tasks, previous studies have reported that
DNN’s give high confidence predictions for unrecognizable images. Mo-
tivated by the observation that such fooling examples might be caused
by the extrapolating nature of the log-softmax, we propose to combine
neural networks with Learning Vector Quantization (LVQ). Our proposed
method, called Deep LVQ (DLVQ), achieves comparable performance on
MNIST while being more robust against fooling and adversarial examples.

1 Introduction

Although Deep Neural Networks (DNN’s) [1] have reached near human-level
performance on challenging object recognition tasks[2, 3], recent studies highlight
that there remain quite some differences with the human visual system. The
first intriguing observation made is that DNN’s are vulnerable to adversarial
examples [4] – worst-case, imperceptible changes to the input that causes the
DNN to label it completely different. Follow-up research [5] showed that DNN’s
are also easily fooled – images for which a DNN assigns high confidence while
not coming from the data distribution.

Our work departs from the observation that such fooling examples might be
caused by the extrapolating nature of the log-softmax[6]:

LSM =
∑

n

log p(ŷn|x(n)) = log
exp(w�

y(n)x+ by(n))
∑

i exp(w
�
i x+ bi)

, (1)

the commonly used loss function for classication problems with neural networks.
We illustrate this point with an artificially generated three-class problem shown
in Fig. ??. We can see that the softmax becomes more confident when a point
is farther from the decision boundary, even though there is no data to support
this decision. In contrast, a prototype based classifier like Generalized Learning
Vector Quantization (GLVQ) [7] produces only high confidence values near the
data points (near the prototypes). In this paper we propose to combine deep
neural networks with GLVQ.

2 Generalized Learning Vector Quantization

We assume we are given training data (x(n), y(n)) ∈ RD × {0, ...,K − 1}, n =
1, ..., N , whereD is the dimensionality of the input, andK the number of classes.
A LVQ classifier consist of a set of prototypes wj ∈ RD, j = 1, ...,M with an
associated class label c(wj) ∈ {1, ...,K}. We consider one prototype per class,
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(a) Softmax (b) GLVQ

Fig. 1: An artifically generated three class problem for which we have trained
(a) a softmax classifier and (b) a GLVQ classifier. The background color (white
for high) indicates the confidence values for a decision, that is arg maxi p(yj |x)
for the softmax and −l(n) for the GLVQ classifier2. The softmax classifier will
assign a high confidence value to a new data point in the right upper corner (far
from the data), while GLVQ will not.

although it is straightforward to extend to multiple prototypes. Classification
follows a nearest prototype scheme i.e. a new data point x̃ is assigned to the
class of the nearest prototype c(arg minwj

d(x̃,wj)) according to some distance
measure d(x̃, wj).

Training aims to find the locations of the prototypes such that the data
points are assigned to their corresponding class labels. Generalized Learning
Vector Quantization (GLVQ) [7] aims to achieve this objective by minimizing
the following training criterion:

LGLVQ(θ) =
∑

n

φ(l(n)) with l(n) =
d
(n)
+ − d(n)−
d
(n)
+ + d

(n)
−

(2)

where d
(n)
+ = minc(wj)=yd(x

(n),wj) and d
(n)
− = minc(wj) �=yd(xi,wj) denote the

distance to the closest correct and closest wrong prototype, respectively. The
numerator of l(n) denotes the margin between the correct and wrong class, while
the denominator scales the term within the interval [−1, 1]. The scaling function
φ provides a handle to balance error minimization and margin maximization.
Using the step function corresponds to the non-differentiable zero-one loss, and
using the identity function corresponds to an average margin maximization. A
trade-off between the two terms can be realised by a scaling function φ(x) =
exp(γx), where γ > 0 controls the steepness of the exponential.

2We multiplied l(n) with −1 such that higher values indicates higher confidence.
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Note that the numerator in l(n) is the reason why GLVQ only produces high
confidence values when you are close to the data. Moving away from the data
can be considered as adding constant a > 0 to the distances d+ and d−. This
contribution will cancel in the numerator while it will add 2a to the denominator.
For correctly classified data points (i.e. negative terms) this will decrease the
confidence value.

3 Supervised neural gas

The main drawback of the GLVQ cost function is that it only displays correct
training dynamics for correctly classified training examples[7]. To see this, note
that for incorrectly classified examples the gradient with respect to the incor-

rect distance ∂l(n)/∂d
(n)
− = 4d

(n)
+ /(d

(n)
+ − d(n))2 is bigger than the gradient with

respect to the correct class ∂l(n)/∂d
(n)
+ = −4d(n)− /(d

(n)
+ − d(n))2. The repelling

force on the prototypes then dominates the attractive force which leads to pro-
totypes that diverge from the data distribution. We empirically found this to be
a problem when we tried to optimize a neural net with the GLVQ cost function.

One way to alleviate this problem is by comparing against the average dis-
tance to all incorrect prototypes, rather than the closest prototype. This smears
out the repelling force over several prototypes, and makes it more likely that
training dynamics are stable. This is the rationale behind Supervised Neural
Gas (SNG) [8] which minimizes the following cost function3:

LSNG =
∑

n

∑

j �=y(n)

hτ (x
(n), j)φ

(

d
(n)
+ − d(x(n),wj)

d
(n)
+ + d(x(n),wj)

)

(3)

The neighborhood function hτ (x
(n), j) = exp(−τkj)/

∑K−1
k=0 exp(−τk) deter-

mines a (normalized) weight for each incorrect prototype loss that depends on
its rank kj , the number of prototypes that are closer to the considered data
point. Our training strategy is to start with small τ → 0, essentially averaging
over all incorrect prototypes, and slowly increase τ → ∞ such that we recover
the GLVQ cost function.

4 Deep LVQ

It is possible to use any differentiable distance function d within the SNG and
GLVQ cost functions. We propose to parameterize the distance function as:

d(x,wj) = ‖f(x; θ)−wj‖22 (4)

where f is a deep neural network with parameters θ that non-linearly projects
the data points into an embedding space. During training we jointly adapt
prototypes W and the neural net parameters θ top optimize Eq. ??

3We note two reasonable alternatives: 1) the neighborhood function can be pushed into

l(n) i.e. we define d
(n)
− =

∑

j �=y(n) hτ (x(n), j)d(x(n),wj) and 2) the neighborhood function

can also be replaced by a softargmin hτ (x(n), j) = exp(−τd(x, wj)/
∑

k exp(−τd(x(n) ,wk))
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Table 1: Classification results on MNIST for a feedforward net with GLVQ
and softmax cost function. We compare without regularization, with batch
normalization (BN), and input noise. We also report results for GMLVQ with 1
and 10 prototypes per class. Results are average test error over 3 runs, standard
deviation is reported between parentheses.

Softmax DLVQ GMLVQ(1) GMLVQ (10)
No regularization 1.73 (0.02) 1.28 (0.07) 8.21 (0.01) 5.01 (0.03)
BN 1.31 (0.03) 1.22 (0.02)
BN + input noise 1.05 (0.02) 0.98 (0.03)

Note that a linear projection f(x) = Ax boils down to Generalized Matrix
Learning Vector Quantization (GMLVQ) [9, 10]. A notable difference with that
work is that we directly parameterize the prototypes in embedding space. This
saves computational time because we avoid a forward pass through the neural
network f for the prototypes. Although the prototypes are no longer directly
interpretable as class conditional exemplars in input space, recent work[11] has
shown that such an interpretation is problematic due to the tendency of the
GLVQ cost function to learn an injective (many-to-one) mapping f .

5 Experiments

The MNIST dataset consist of 70,000 handwritten digits ranging from 0 to 9. We
make the usual split of 50, 000, 10, 000 and 10, 000 for the training, validation and
test set, respectively. We use a fully connected neural network with 1200−1200−
200 hidden units, where all units have rectified linear activations. We initialize
the prototypes for DLVQ as the class conditional means in the embedding space.
We start training with a large neighborhood, i.e. τ = 0.1, and linearly increase
to τ = 30.0. We trained our networks for 100 epochs, and present the test errors
by early stopping on the validation error.

We compare training without any form of regularization, with batch normal-
ization (BN) [3], and additive gaussian noise of standard deviation 0.5 on the
inputs. The results are shown in Table 1. Without any form of regularization,
DLVQ significantly outperforms the softmax. This gap reduces when we use
batch normalization, which has a better regularization effect for the softmax.
When we also include input noise, DLVQ still outperforms the softmax and
reaches a notable 0.98% test error.

We also compare DLVQ to GMLVQ with 1 and 10 prototypes per class. Un-
surprisingly, the linear transformation does not have enough capacity resulting
in poor performance of 8.2%. Even increasing the number of prototypes from 1
to 10 only slightly improved the performance to 5.0%, clearly worse than DLVQ.

Fooling examples We first measure how confident the classifiers are when we
feed it 10, 000 data points sampled from large uniform noise U(−10.0, 10.0)784.
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(a) Softmax (b) DLVQ

Fig. 2: Histogram of the confidence values for the neural network trained with a)
softmax and b) GLVQ on MNIST. The green bars indicate the confidence values
for the test set, the blue bars indicate the confidence values for noise drawn from
U(−10, 10)784 and the red bars denote the confidence for adversarial examples
on the test set.

A histogram of the resulting confidence values is shown in Fig. 1. For the soft-
max, most confidence values are indistinguishable from the produced confidences
on the test set. As expected, inputting large input values automatically fools
a softmax neural network. On the other hand, DLVQ is robust against such
outliers by construction.

This automatically raises the questions if DLVQ is not vulnerable to other
fooling examples. We investigate this by starting from a random noise image
performing gradient descent on the distance d(x,wj) to a class prototype with
respect the input image. We perform 100 gradient steps such that we reached
above 0.99 confidence level. The resulting images for all 10 digits are shown in
Fig.2, and show remarkable resemblance with the original digits.

Adversarial examples We also verify the robustness of DLVQ against adver-
sarial examples by the fast gradient sign method as suggested in [6]. We use
ε = 0.25, and show the resulting confidence values for the adversarial examples
in Fig. 1. We made the confidence negative for the softmax if the predicted
class was wrong. The softmax misclassified more than 95% of the adversarial
examples, while DLVQ only misclassified 12%.

6 Conclusion

We proposed to replace the standard log-softmax loss in neural networks with
GLVQ. DLVQ asks inputs of the same class to be mapped to a point in the em-
bedding space, which is a harder constraint than the usual requirement of linear
separability. Our experiments on MNIST show that DLVQ slightly outperforms
the log-softmax, probably due to this regularization effect. More interestingly,
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Fig. 3: High confidence (> 0.99) images for DLVQ as generated by gradient
descent on random noise. All 10 digits show some resemblance with the original.

we have shown that DLVQ is more robust against fooling and adversarial exam-
ples.
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