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Department of Mathematical Information Technology
P.O. Box 35, 40014 University of Jyväskylä - Finland

Abstract. Classifier construction for data with imbalanced class frequen-
cies needs special attention if good classification accuracy for all the classes
is sought. When the classes are not separable, i.e., when the distributions
of observations in the classes overlap, it is impossible to achieve ideal
accuracy for all the classes at once. We suggest a versatile multicriteria
optimization formulation for imbalanced classification and demonstrate its
applicability using a single hidden layer perceptron as the classifier model.

1 Introduction

In many practical applications of classification, the prior classwise frequencies of
labelled data vary a lot [1]. Special techniques are constantly emerging to address
and successfully manage this well-known situation, e.g., [2]. This paper outlines
our current approach to handle imbalanced classification in a proper and natural
way, using multilayered perceptron (MLP) as the classifier model and Pareto-
based memetic multiobjective optimization (MOO) for learning. An overview of
Pareto-based learning is given by [3]. Benefits of the approach include a clean
separation of the classification accuracies of all the classes, allowing classifiers to
be constructed independently of class frequencies, without the need to specify
importances or weights a priori, and without external re-sampling techniques.
Further possibilities include gaining insights about the properties of the dataset
under examination, such as its separability and complexity.

Restricting ourselves to fully supervised classification of continuous input
data, we assume that a training dataset of N observations and corresponding
integral target class labels X = {(xi, ti) | xi ∈ R

n, ti ∈ {1, . . . ,K}}Ni=1 is
available, and the task is to use these examples to learn how any x ∈ R

n should
be assigned to one of the K classes. By imbalance we mean that the numbers of
labelled observations in each class Nc = |Xc|, where Xc = {(xi, ti) ∈ X | ti = c},
or, equivalently, their frequency of occurrence in the whole dataset, φc = Nc/N ,
are different from each other. Cost-sensitive learning [4] and ROC curves [5] are
traditional ways of dealing with the situation. In binary classification, different
costs may apply to false positive and false negative predictions. With more
classes, even more complex trade-offs must be addressed.

Multiobjective, or multicriteria, optimization (MOO) [6] augments the clas-
sical field of optimization by considering multiple objective functions (aka. cost
functions, fitness functions, criteria) simultaneously. Without loss of generality,
we can consider minimization only. For m objectives, we are to solve

min
X∈Ω

f(X) = (f1(X), f2(X), . . . , fm(X)),
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where fi(·) denotes the ith real-valued objective function and Ω the set of ad-
missible values for the unknown X. We adopt the concept of Pareto-optimality
based on the dominance relation. A solution image f(X ′) is said to dominate
f(X), notated f(X ′) � f(X), if fi(X

′) ≤ fi(X) for all i ∈ {1, . . . ,m} and
fi(X

′) < fi(X) for at least one i ∈ {1, . . . ,m}. Instead of a single optimum,
of interest is the Pareto set (PS) of nondominated solutions for which no domi-
nating solutions exist, P = {X ∈ Ω | ¬∃Y ∈ Ω : f(Y ) � f(X)}. The image of
the PS in the objective space f(P ) is called the Pareto Front (PF). Intuitively, a
solution not in the PS is suboptimal because improvements are possible without
compromises. In MOO methods based on sampling the (generally infinite) PS,
an approximation of the PF is presented to the user, who ultimately has to select
a preferred compromise solution. The PF exploration itself can reveal insights
into the MOO problem.

Multiobjectivity pervades machine learning: For example, any MLP learning
algorithm using a complexity penalty such as “weight decay”, can be considered
an instance of MOO where a single solution of the PS is sampled via scalariza-
tion using pre-assigned weights [6]. Furthermore, different measures of complex-
ity may be mutually conflicting, e.g., an MLP with fewer hidden neurons (less
complex) may require larger weights (more complex) to fit the training data.
Clearly, imbalanced classification is also an instance of MOO whenever a single
solution cannot achieve full accuracy for all the classes. Based on these obser-
vations, we argue that MOO provides a holistic and preferrable framework for
neural network design.

A multi-class MOO interpretation of the ROC is used by [7] to minimize the
K × (K − 1) misclassification rates possible with K classes, i.e., predictions to
class i when j would be correct. The resulting quadratic increase in the number
of objectives for multi-class scenarios is known to be problematic for traditional
MOO algorithms. An extreme solution [8] is to reduce the information by consid-
ering only the worst class-wise misclassification rate. The number of objectives
remains small, but all information about the performance on different classes is
lost when K > 2. We opt for a mid-way solution briefly hinted to by [7].

The inherent MOO nature of the popular support vector machine (SVM) has
been used for Pareto-based imbalanced classification for example in [9]. However,
SVM is inherently a binary classification technique although it can be extended
for multiple classes and nonlinear regression with special enlargements. MLP
with its basic structure is readily suitable to represent as many classes (or re-
gression outputs) as needed, which is why we prefer it. In MLP training, it is
customary (e.g., [8]) to combine a global evolutionary optimization framework
and a traditional gradient-based local search. Such hybrids fall within the cat-
egory of memetic algorithms (MA) [10] which we assume as the methodological
basis in this work.

In some works (e.g., [11]), an evolutionary MOO step is used to handle
class imbalance as an intermediate phase, but the algorithm still remains single-
objective in the sense that a final solution is eventually selected that minimizes
the total accuracy. The recent survey [12] lists further applications of evolution-
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ary MOO in classification and other data mining tasks. The multiclass approach
followed here was not included in the findings of [12], which makes us more con-
fident of our view that the community may have recently been less interested in
some earlier ideas [3, 7] that should be revived and ultimately combined with
the newer developments. From [12] we observe that usual candidates for indi-
vidual MOO criteria for MLP training are related to total accuracy and network
complexity, but with fewer proposals to divide the classwise error rates and to
connect the ROC methodology to scenarios with more than two classes. NSGA-
II [13] seems to be the most popular MOO algorithm [12, 14], hybridized with a
local solver as in [15].

Next, in Section 2, we introduce our method. In Section 3, we demonstrate
its use and identify future possibilities. We briefly conclude in Section 4.

2 The method

Algorithm 1 outlines a Pareto-based MOO strategy that combines the generic
memetic operations [10] of “Initialization”, “Cooperation” and “Improvement”
of a population of solution candidates with the non-dominated sorting (NS) ap-
proach of NSGA-II [13]. By leaving MOO up to NS and adopting the established
point of view and terminology of MAs, we can focus directly on the rich possi-
bilities in defining specific operators for our application of interest, which is now
MLP classifier training for imbalanced data.

The problem definition consists of the objective functions. Given a multi-
class dataset, we wish to minimize the classwise numbers of misclassifications
fc = |{(xi, ti) | ti = c �= prediction(xi)}| for c = 1, . . . ,K, yielding K objectives.

For simplicity, we restrict ourselves to the single-hidden-layer feedforward
network (SLFN) as the classifier model. Its action for a given vector x ∈ R

n0

can be formalized (see [16]) as WF(Vx̃), where V ∈ Rn1×(n0+1) contains the
hidden weights with bias values in its first column, W ∈ Rn2×(n1+1) the outer-
layer weights with biases, x̃ denotes the enlargement of a vector as [1 xT ]T for

Algorithm 1: General memetic MOO with non-dominated sorting

input : Definition of the problem, encodings, parameters
output: Approximated sample of the Pareto set
parents ← Initialize() ;
parents ← Improve(parents) ;
AssignRankAndCrowdingDistance(parents) ;
repeat

children ← Cooperate(parents) ;
children ← Improve(children) ;
parents ← NondominatedSort(parents ∪ children) ;

until Iteration limit reached ;
return parents;
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the bias computation, and F denotes the application of an activation function
(logistic sigmoid here) and enlargening of the result similarly to x̃. Thus, our set
of admissible solutions is Ω = R

n2×(n1+1) × R
n1×(n0+1). The encoding of such

a solution is simply the storage of the real-valued weights. For the experiment
here, we use a population of 100 individual solution candidates encoded in this
way. Other parameters controlling the method steps will be explained below.

We initialize the first population by assigning uniform random weights from
the distribution U([−1, 1]). Then, the first round of improving the population
is performed by running at most 200 steps of the conjugate gradient method on
the single-objective (scalarized) cost function

J (V,W) =

K
∑

c=1

λc

Nc
∑

i=1

∥

∥WF(Vx̃pc(i))− tpc(i)

∥

∥

2
+ μ

∑

w∈{V,W}
|w|2,

where λc ∼ U([0.1, 1]) and μ ∼ U([10−6, 10−4]) are random values, pc an in-
dex mapping to reach observations of class c, vector tpc(i) ∈ R

K is the usual
representation where the tpc(i)th component is 1 and other components are 0.
This traditional local search restricts a solution to a meaningful MLP after dis-
turbance by the evolutionary operations that facilitate global exploration. The
complexity penalty imposes a necessary soft constraint. We hasten to emphasize
that while the internal improvement step is single-objective and uses a function
different from the objectives evaluated in the evolution, the randomized weights
keep the overall search multiobjective, and the user is free from having to make
strong assumptions of the problem before viewing the resulting PF. Even a very
simple equation like this seems to work in practice, as illustrated in Section 3.

In the example here, the cooperation step uses only a unary mutation opera-
tor that perturbs each weight by noise drawn from n(0, 0.4) with a probability of
10%. Extending the cooperation step with crossover operators designed specifi-
cally for MLP classifiers is another main focus of our current research.

3 Experimental evidence of suitability

Figure 1 illustrates the class imbalance problem with a simulated dataset in
which n = 2,K = 3, N = 400, φ1 = 5%, φ2 = 10%, and φ3 = 85%. The
case is made difficult by letting all of the classes overlap in the middle, but
none of them contain subconcepts or noise (cf. [1]) by design. The decision
boundaries of different classifier candidates from the approximated PS are also
shown, indicated by colors and numerical identity tags. The MLP layers had
n0 = 2, n1 = 20, and n2 = 3 units. Not one of the classifiers can be deemed
better than the other without assigning some preferred costs to misclassifications
in one class versus the other, so the pure multiobjective nature of the problem
can be clearly seen. Improvement in one class implies degradation in another.
Figure 2 shows a parallel coordinate plot where the trade-offs between objective
functions can be compared visually.

The solutions were obtained by running the described memetic MOO opti-
mization algorithm for 100 iterations. Noteworthy with regard to the prospects
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Fig. 1: Post optimization exploration of pareto-optimal classifiers.

of our approach is the fourth solution (ID tag 8). It contains sharper edges and
seems to be overfitting the example data. With less versatile learning frameworks
one needs to compete against this kind of behavior by pre-assigning constraints
or penalties to the network complexity. In a MOO setting, it will be trivial to
add network complexity measure(s) as additional objectives, turning the danger
of overfitting into the prospect of gaining valuable information of the complexity
of the data itself. The memetic approach in general does not require limitations
to be set a priori, even if we have been using them in this early demonstration.
To really set the framework and its user free, further MLP-specific development
of the memetic improvement (lifetime learning) and cooperation (recombina-
tion) operators and solution encoding needs to be done. We shall pursue these
in follow-up publications.

4 Conclusions and future work

In this paper, we demonstrated how Pareto-based MOO provides a natural ap-
proach to handle imbalanced classification using a mid-way approach among
proposed alternatives. The application shown is one part of our current pursuit
of a combined methodology involving objective functions to jointly and explic-
itly handle also MLP complexity, generalization, and the possibility of mislabeled
data. Within the past decade, after the proliferation of MOO methods for MLP
learning, holistic approaches appear to have been considered surprisingly little,
as only a few aspects have been explicitly formulated as separate objectives in
each study. Therefore, we see it fit to remind the community about the possi-
bilities in Pareto-based multiobjective learning.
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Fig. 2: Parallel coordinates view of the solutions in Figure 1.
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