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Abstract. Inverse Reinforcement Learning (IRL) describes the prob-
lem of learning an unknown reward function of a Markov Decision Process
(MDP) from demonstrations of an expert. Current approaches typically
require the system dynamics to be known or additional demonstrations of
state transitions to be available to solve the inverse problem accurately.
If these assumptions are not satisfied, heuristics can be used to compen-
sate the lack of a model of the system dynamics. However, heuristics can
add bias to the solution. To overcome this, we present a gradient-based
approach, which simultaneously estimates rewards, dynamics, and the pa-
rameterizable stochastic policy of an expert from demonstrations, while
the stochastic policy is a function of optimal Q-values.

1 Introduction

The growing number of autonomous systems requires efficient methods to ad-
just the system to new environments and tasks. Learning from demonstration
offers methods to parameterize a desired behavior and can be split into two sub-
fields: Behavioral Cloning and Inverse Reinforcement Learning (IRL). Behav-
ioral Cloning estimates a policy from demonstrations and therefore mimics the
expert directly. Especially, if the environment or its dynamics change, pretrained
policies can be inappropriate. Therefore, IRL [1] has been introduced, which de-
scribes the problem of recovering a reward function from demonstrations, as
the reward function encodes the expert’s goal. Approaches have been proposed
which solve the IRL problem under various assumptions, e.g. [2, 3, 4, 5]. The
cited approaches require the true system dynamics to be known. Inaccurate
transition models can bias the reward estimate. Since the system dynamics
are often unknown, model-free IRL algorithms have been proposed, such as in
[6, 7, 8]. Typically, those approaches require access to additional observations
of transitions. If these cannot be obtained, the approaches tend to suffer from
wrong generalizations due to heuristics. Often, experts are unable to produce
optimal demonstrations. As a consequence, IRL approaches are necessary that
deal with stochastic behavior. In [9, 10, 11], stochastic policies of maximum
(causal) entropy are trained under the constraint of matching feature expecta-
tions. This causes the stochastic policy to be a Boltzmann distribution over soft
Q-values. However, if the expert’s stochastic policy follows a different type of
distribution, these approaches can be inappropriate.
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Our contribution is to generalize IRL to the case of unknown dynamics and
unknown stochastic policies. We propose an approach that simultaneously opti-
mizes rewards, dynamics, and the expert’s stochastic policy by maximizing the
a posteriori probability of the demonstrations. Even though many transitions
have never been observed, they influenced the expert’s policy and can therefore
to some degree be inferred from demonstrations. The expert’s stochastic policy
is modeled as a parametric function of optimal Q-values, which assumes that the
expert is able to correctly estimate the value of different actions, but is unable to
choose them appropriately. We provide a gradient-based solution and evaluate
our approach on a synthetic gridworld satellite navigation task.

2 Fundamentals

An MDP is a tuple M = {S,A, P (s′|s, a), γ, P (s0), R}, where S is the state space
with states s ∈ S, A is the action space with actions a ∈ A, P (s′|s, a) is the
probability of a transition to s′ when action a is applied in state s, γ ∈ [0, 1) is a
discount factor, P (s0) is a start state probability distribution, and R : S×A→ R
is a reward function which assigns a real-valued reward for picking action a in
state s. Often, this reward is expressed as a linear function R(s, a) = θTf(s, a)
of state- and action-dependent features f : S ×A→ Rd with feature weights θ.
The goal of an MDP is to find an optimal policy π∗ (s) ∈ A, which specifies state-
dependent actions a, such that its execution maximizes the expected, discounted,
cumulated reward E [

∑∞

t=0 γ
tR (st, at) |s0 = s, π]. The optimal value function

can be computed by value iteration, which repeatedly applies Eq. (1) to an
arbitrary initial Q-function. After convergence, the optimal policy chooses the
actions with the largest Q-value: π∗ (s) = argmaxa′ Q(s, a′).

Q(s, a) = R (s, a) + γ
∑

s′∈S

[

P (s′|s, a)max
a′

Q(s′, a′)
]

(1)

3 Simultaneous Estimation of Rewards, Dynamics, and

Stochastic Policy (SERD-SP)

We propose an approach, called Simultaneous Estimation of Rewards, Dynamics,
and Stochastic Policy (SERD-SP), to account for problems, where neither the
rewards, the dynamics, nor the expert’s stochastic policy π (s, a) = P (a|s) is
known. Since the expert’s estimate of the transition model may differ from the
real one, we introduce independent models. Additionally, we assume that there
exists a parameterizable stochastic mapping π = g(Q) from optimal Q-values to
the stochastic policy of the expert. Then, the problem can be formalized as:
Determine:

• Expert’s reward function R(s, a)

• Expert’s estimate of the dynamics PA (s′|s, a)

• Real dynamics P (s′|s, a)

• Stochastic policy mapping g(Q)
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Given:

• MDP M \ {R,P (s′|s, a) , PA (s′|s, a)} without rewards and dynamics

• Demonstrations D = {τ1, τ2, . . . , τN} with trajectories τ = {(sτ0 , a
τ
0) ,

(sτ1 , a
τ
1) , . . . ,

(

sτTτ
, aτTτ

)}

of an expert acting in M based on a policy that
depends on R(s, a), PA (s′|s, a), and g(Q)

A set of parameters of the rewards, dynamics, and the stochastic policy is intro-
duced, which should be estimated from the given demonstrations D:

θR Feature weights of the reward function R(s, a)
θTA

Parameters of the expert’s transition model PθTA

θT Parameters of the real transition model PθT

θP Parameters of the expert’s stochastic policy mapping g(Q)

We propose to maximize the a posteriori probability of the demonstrations with
respect to the parameters θ =

(

θ
⊺

R θ
⊺

TA
θ
⊺

T θ
⊺

P

)⊺

. Assuming independent
trajectories, the likelihood of the demonstrations in D can be expressed as

P (D|M,θ) =
∏

τ∈D

P (sτ0)

Tτ−1
∏

t=0

[

πθ (s
τ
t , a

τ
t )PθT

(

sτt+1|s
τ
t , a

τ
t

)]

. (2)

It should be noted that the policy πθ (s, a) depends on the parameters θR, θTA
,

and θP . In contrast, the transition model PθT
(s′|s, a) only depends on θT .

Then, the maximum a posteriori estimator of the parameters can be formulated:

θ∗ = argmax
θ

logP (D|M,θ) + logP (θ). (3)

We propose a gradient-based method to optimize the parameters according to
Eq. (3) with Lθ (D) = logP (D|M,θ) + logP (θ):

∂

∂θi
Lθ (D) =

∑

τ∈D

Tτ−1
∑

t=0

[

∂

∂θi
log πθ (s

τ
t , a

τ
t ) +

∂

∂θi
logPθT

(

sτt+1|s
τ
t , a

τ
t

)

]

+
∂

∂θi
logP (θ). (4)

Since the system dynamics and the prior are problem-dependent, the following
derivations will focus on the partial derivative ∂

∂θi
log πθ (s

τ
t , a

τ
t ). This requires

the stochastic policy mapping π = g(Q) of the expert to be specified. We will
exemplarily derive the gradient for a Boltzmann policy with temperature θP :

πθ(s, a) = g(Q)(s, a) =
exp( 1

θP
Qθ(s, a))

∑

a′∈A exp
(

1
θP

Qθ(s, a′)
) . (5)

Then, the partial derivative of the log policy ∂
∂θi

log πθ (s
τ
t , a

τ
t ) results in:

∂

∂θi
log πθ (s, a) =

{

1
θP

[

∂
∂θi

Qθ(s, a)− Eπθ(s,a′)

[

∂
∂θi

Qθ(s, a
′)
]]

if θi 6= θP
1

θP
2

[

Eπθ(s,a′) [Qθ(s, a
′)]−Qθ(s, a)

]

if θi = θP
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The gradient of the policy depends on the gradient of the state-action value
function ∂

∂θi
Qθ(s, a). Since we assume that the expert chooses actions based on

an optimal, greedy value function, the derivative of the Q-function from Eq. (1)
has to be computed. This can result in a sub-derivative, as the max-function is
not differentiable. Nevertheless, for the sake of simplicity, we call it Q-gradient.

∂

∂θi
Qθ(s, a) =

∂

∂θi
θ
⊺

Rf(s, a) + γ
∑

s′∈S

[(

∂

∂θi
PθTA

(s′|s, a)

)

Vθ (s
′)

]

(6)

+ γ
∑

s′∈S

{

PθTA
(s′|s, a)

∂

∂θi
Qθ(s

′, π∗
θ (s

′))

}

Eq. (6) shares similarities with the approach from Neu and Szepesvári [3]. It
is a linear equation system and can be computed directly. However, since it is
a fixed point equation, repeatedly applying Eq. (6) to an arbitrary Q-gradient
will converge to the true one. Especially in large state and action spaces, this Q-
gradient iteration can require less computations than directly solving the linear
equation system. Algorithm 1 summarizes the proposed algorithm.

Algorithm 1 SERD algorithm

Require: MDP M \{R,PT , PTA
, g(Q)}, Demonstrations D, initial θ0, step size

α : N+ → R+, t← 0
while not sufficiently converged do

Qθ ← QIteration(M , θt) ⊲ Eq. (1)
πθ ← DerivePolicy(M , Qθ) ⊲ Eq. (5)
dQθ ← ComputeQGradient(M , Qθ, πθ, θt) ⊲ Eq. (6)
dLθ (D)← ComputeGradient(M , D, dQθ) ⊲ Eq. (4)
θt+1 ← θt + α(t)dLθ (D)
t← t+ 1

end while

4 Evaluation

We evaluate the proposed approach in a satellite gridworld navigation task,
which is illustrated in Fig. 1. The motion dynamics are stochastic and differ
in the forest and on open terrain. The action space allows the agent to choose
from five different actions: moving in one of four directions (north, east, south,
or west) or remaining in the state, respectively. Possible successor states are
the four neighbouring ones or the current one. On the open terrain (depicted in
light gray in Fig. 1 (c)), the agent has a probability of 0.8 to successfully exe-
cute the desired motion and 0.1 to fall either to the right or to the left. In the
forest (depicted in dark gray in Fig. 1 (c)), successful motions only occur with
a probability of 0.3. The remaining successor states have a probability of 0.175.
Staying in a state is always successful in both forest and open terrain. Due to
this definition of the motion dynamics, the agent has to trade off between short
cuts through the forest, which are less likely to be successful, or longer paths on
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(a) (b) (c) (d) (e) (f)

Fig. 1: (a) Environment, Map data: Google. (b) Discretized state space (Goal:
green. Initial states: red.). (c) Forest states are indicated in dark-gray and open
terrain in light gray. (d) Reward (e) Value function (f) Expected state frequency.

open terrain. The reward is a function of two features, which are weighted by
θR = (6, 6)⊺. The first feature encodes the normalized gray scale value [0, 1] of
the image, while the second one is a goal indicator {0, 1}. The discount is 0.99
and the temperature of the Boltzmann policy was set to θP = 2. We compute the
optimal Q-function and sample trajectories from the resulting stochastic policy
to obtain expert demonstrations. We assume that the expert has knowledge
about the true transition model. Therefore, the parameters of the transition
model θTA

and θT are identical. The system dynamics are modeled as energies
of Boltzmann distributions. Since there exist 4 motion actions in each, forest
and open terrain, as well as one staying action, 9 models are trained with 5 pos-
sible outcomes, resulting in 45 parameters. An m-estimator with a uniform prior
is used to estimate the dynamics from demonstrations before applying SERD-
SP or alternative IRL approaches. The feature weights are initialized randomly
(∀i : θi ∈ [−10, 10]). We use Gaussian priors for the feature weights and the pol-
icy parameter. The prior of the dynamics is favoring high entropies. We optimize
all parameters for various sizes of demonstration sets with SERD-SP and com-
pare it to the result of Maximum Discounted Causal Entropy IRL [11] (MDCE
IRL), and Relative Entropy IRL [6] (REIRL). The additional samples, which are
needed by REIRL, are sampled from the m-estimated transition model. Fig. 2
summarizes the results. The median log likelihood of demonstrations from the
true model on the learned ones in Fig. 2 (a) shows that SERD-SP outperforms
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Fig. 2: (a) Median with quartiles of the log likelihood of demonstrations drawn
from the true model under the estimated model. (b) Average Kullback-Leibler
divergence between the estimated dynamics and the true ones.
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the other algorithms, while being sample efficient. This result is understandable,
as the comparative approaches model different types of stochastic policies. In
addition, Fig. 2 (b) illustrates that SERD-SP is further optimizing the initially
m-estimated dynamics, which results in more accurate models.

5 Conclusion

In this paper, we presented a gradient-based solution for a simultaneous estima-
tion of rewards, dynamics, as well as the expert’s stochastic policy. We assume
that the expert is able to compute an optimal Q-function, but executes sub-
optimal actions. This stochasticity is modeled by a parameterizable function
of optimal Q-values. The evaluation shows improved performance against tra-
ditional IRL methods with more accurate policies and dynamics. Future work
could elaborate on different types of stochastic policies and on the case that the
agent’s estimate of the dynamics differs from the true one.
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