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Abstract. Kernel approximation is an effective way of dealing with
the scalability challenges of computing, storing and learning with kernel
matrix. In this work, we propose an O(|Q|r?) time algorithm for rank r ap-
proximation of the kernel matrix by computing |(2| entries. The proposed
algorithm solves a non-convex optimization problem by random sampling
of the entries of the kernel matrix followed by a matrix completion step us-
ing alternating least squares (ALS). Empirically, our method shows better
performance than other baseline and state-of-the-art kernel approximation
methods on several standard real life datasets. Theoretically, we extend
the current guarantees of ALS for kernel approximation.

1 Introduction

Kernel methods have shown good performance on several machine learning tasks
while providing a firm theoretical understanding. However, kernel methods are
restricted in their use due to the scalability issues in using kernel matrix for
learning. Challenges in kernel based learning arise from the cost of computing,
storing and performing multiplication operations with kernel matrix.

Let K : X x X — R be a positive semi-definite kernel function, where X is
the set of possible inputs. In machine learning tasks, often some input data is
available in form of a learning set, £. For £ = {x1,...,2,}, the kernel matrix
K is defined as the n x n matrix of kernel function evaluation at observed points
ie. K;j = K(x;,x;). The cost of computation and storage of kernel matrix for
X C R%is O(n%d) and O(n?), respectively. Learning using kernels often requires
multiple matrix-vector multiplication. This computation often takes O(n?) time
using exact kernel matrix.

Low rank matrix approximations of the form K ~ UU” where U € R™*" and
r < n provide a way to overcome the scalability issues. These rank r approxi-
mations require nr parameters for storage and the matrix vector multiplications
can be performed in O(nr) time. However, computation of a good low rank ap-
proximation is challenging. The provably optimal rank r approximation is given
by the top r singular vectors computed via SVD which takes O(n?r) time and
requires computation of the entire kernel matrix [IJ.

In this paper we extend a general matrix approximation algorithm, Low rank
matrix completion (LRMC) by Jain et al. [2] and propose an O(|Q2|r?) time algo-
rithm for rank r approximation where || is the number of entries of the kernel
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matrix that need to be computed. For commonly used kernel functions, we
observe that [Q] = O(nrlogn) is sufficient for good approximation. Although
kernel matrix approximation is a well studied problem, to our knowledge, gen-
eral matrix approximation schemes haven’t been efficiently extended for kernel
matrices because these schemes don’t respect the symmetry and positive definite
nature of kernel matrices.

1.1 Literature Review

Nystrom approximations [3] are among the most popular kernel matrix approxi-
mation schemes. These methods attempt to recover the kernel matrix by observ-
ing some m columns and corresponding rows of the matrix. Nystrom approxima-
tion is given by K ~ KS(STKS)ISTK = UUT where S is a column sampling
matrix,  denotes the pseudo-inverse and subscript r denotes the optimal rank
r approximation. Extensions of Nystrom method using non-uniform sampling
schemes to select rows and columns have been analysed [4]. Sampling of columns
based on k-means clustering of input data has also been proposed as K-means
Nystrom[5]. This method shows improvement over the standard Nystrom and
non-uniform sampling schemes in [4].

Recently Si et al.proposed memory efficient kernel approximation (MEKA)
algorithm [6]. This approach works by finding blocks in the kernel matrix fol-
lowed by approximation of each block. The blocks are composed by clustering
the data in the input space. The intracluster kernel evaluation form the diagonal
blocks of the kernel matrix and are approximated using standard Nystrom. The
off-diagonal blocks are approximated by sampling few elements and solving a
least squares problem. MEKA is space efficient; in almost the same space as the
rank r approximation of the Nystrom method, MEKA can perform a rank cr
approximation, where c¢ is the number of clusters.

Algorithm | Space complexity | Rank Time Complexity

Nystrom O(nr) r O(m? + nmr) ~ O(nr?)
KALS O(nr) r O(|Qr? + nr®) = O(nlognr?)
MEKA O(nr + c*r?) er O(nr? +em3) + T + Te

Table 1: Comparison of time and space complexities of different algorithms for
kernel approximation. KALS is the approach presented in this paper. T¢ and
Ty, denote the time required for clustering and solving least square problem in
MEKA. m is the number of sampled columns for Nystrom approximation

2 Proposed Method

The proposed approach builds up on previous works on matrix approximation
using alternating least squares (ALS) [2 [7]. For a general matrix M, ALS
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gives approximation of the form M ~ UV by solving the following non-convex
optimization problem:

: Trry T, \2
min p_(Mij —e; UV7ej) (1)
i,
where e; represents the canonical basis vector [0,...,0,1,0,...0]”. The problem

is solved by iterating over steps of fixing U and solving for V" and vice-versa. Each
alternating step is convex, but overall the objective function is non-convex. Jain
et al. [2] show that if[[lis solved over enough number of entries of M, convergence
to the optimal solution is guaranteed.

Algorithm 1 Kernel approximation via ALS

Require: Matrix K, «,, target rank r
Ensure: Unx,«
1: © <« sample entries of K.
2. U « Nystrom(K,r)
3: fort=0,...,T—1do
4 VY  argmin,, PigyenHKi — eF UV Te;)?
5 g+ Uf+;/f+1

The proposed method, kernel approximation via ALS (KALS), is shown
in algorithm [[I For kernel matrix approximation we are interested in solving
ming Y, (Kij — efUU"e;)?. Algorithm [ solves the problem stated in [ but

approximates U as U+ Ut%vtﬂ at the end of ¢ + 1** iteration. Also, for
kernel matrices, the initialization step can be carried out using Nystrom method
which gives a good initialization point for the alternating steps.

Initialization requires running Nystrom which takes O(nr?) time [3]. Step H
and [B of algorithm [Ml require solving n least square problems each of which take
O(|2|r* 4+ r3) time, where |$2;| is the number of entries sampled from the j*"
column of K. Thus, overall time complexity of running 1 iteration of KALS is
O(|Q|r? +nr?3). . In our experiments we found |Q| = nrlogn to give good results.
Also,in practice we found running as low as 4 iterations of ALS is enough.

2.1 Theoretical Analysis

In this section we give a summary of geometric convergence of KALS to opti-
mal SVD solution. For the proofs, we consider uniform sampling in step 1 of
algorithm [Il The analysis is an extension of analysis in [2]. For rank r approxi-
mation at the end of the ' iteration, let K = UtU +" be the approximation. U*
denotes an orthonormal basis spanning the column space of U?. Let the optimal
rank r approximation of K be K, = U*E(IQ)U*T, where U* = UI((T) are the top-r
singular vectors of K and zﬁ? is a diagonal matrix of top-r diagonal entries of
Yk in non-increasing order. dist(U, W) = [|[UTW|| = |[WTU|| denotes the prin-
cipal angle based distance between the subspaces spanned by the columns of U
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and W, where U and W, denote the orthonormal basis spanning the subspace
perpendicular to U and W respectively and ||.|| denotes the Lo norm [1].

We make the standard assumption regarding the coherence of the kernel
matrix i.e. [[u'®| < % Vi € [n], where u!® denotes i*" row of U!. The
proof proceeds by showing that the subspaces spanned by the solution of ALS
gets iteratively closer to the optimal subspace spanned by the top-r singular
vectors of the original kernel matrix. We use the following inductive structure
for the proof:

1. Base case: U° is close to U* and U° is incoherent
2. Inductive hypothesis: U? is close to U* and U! is incoherent

3. Inductive step: U*t! is closer to U* and U**! is incoherent

Lemma 1. (Initialization) For rank r Nystrom approximation given by K =
KS(STKS)ISTK,Athe distance between optimal U* and the subspace spanned
by the columns of K, Uy is bounded by:

UT+I(K)

dist(U*,Uy) < -
U, Ug) o ()

(2)

where 0,.41(K) denotes r + 1" largest singular value of K.

Further for large gap in r'" eigenvalue of K, using theorem 6 from [§], we get
following high probability convergence bound which shows the effectiveness of
initialization via Nystrom:

L  on(K)
Corollary 1. (Initialization) Let A = FRYOd)

values of K. If 0,.(K) — 041 (K) > %\/572/5) then with probability 1 — ¢

3
. 7y <]
dist(U*,Ug) < 5 9A (3)

For the inductive hypothesis in step 2 of the proof, we leverage the results
for LRMC from theorem 5.1 of [2].

Corollary 2 (Extending Theorem 2.5 and 5.1 from [2]). In the sampling step,
let every entry of K be sampled uniformly and independently with probability,

(—Zigg )212r%2 log nlog

2
n52r

be the ratio of consecutive eigen-

rllK|lr
€

p>C (4)

where da, < % and C > 0 is a global constant. The (t-+1)t" iterate, V*1,
satisfies the following with probability atleast 1 — #

dist(UY U*) < gdist(ff(t), U*) (5)

Similarly, the coherence of iterates can also be shown.

Corollary 3 (Cohergnce). Let UM pe w1 incoherent. Then with probability at
least 1 — X, iterate UM*Y) is also py incoherent.
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2.2 Empirical Results

For empirical evaluation we consider the popular RBF kernel. We evaluate our
method on several standard datasets taken from LIBSVM website. For empirical
comparisons we consider sampling based on mixture of uniform sampling, col-
umn selection based on clustering and deterministic selection of diagonal entries.
For initialization step, we perform k-means Nystrom. Table 2] shows the mean
and standard deviation of spectral error (|| K — K|) for 1000 randomly sampled
data points for different kernel approximation methods given the number of pa-
rameters (nr) required to store the approximation. Under the space constraints
of storing the approximation, KALS shows both lower errors as well as stabler
results as indicated by lower standard deviation.

Figure [[I shows the spectral error as the number of parameters are varied
by changing the rank r of the approximation. As the number of parameters is
increased (by raising rank r of approximation), the spectral error goes down for
all the methods. KALS is worse only to SVD which is provably optimal.

Table 2: Comparison of different algorithms given number of parameters for
storing approximation.

Dataset #param stdNys kNys MEKA KALS SVD

germanSc 50000 3.36 £ 0.29 2.92£0.11 7.00 £+ 2.64 2.09 +0.07 1.67

satimageSc 443500 0.724+0.28 0.30 £ 0.04 1.73+£0.24 0.20 £ 0.01 0.12
wine 649700 1.12+0.23 0.26 +0.04 1.16 £0.79 0.17+£0.08 0.004
cpusmall (x10~°) 819200 191.6 £211.1 | 4.64+£2.05 | 875.0+735.5 | 1.28 £ 0.56 0.004
cadataSc 4128000 | 0.67+0.30 | 0.60+0.15 | 0.072+0.02 | 0.067 &+ 0.04 | 0.0003
ijennSc 9998000 0.79 +£0.07 0.57 £ 0.06 1.03 £0.45 0.38 £0.02 | 0.1307

3 Conclusion

In this paper we proposed kernel approximation via alternating least squares
(KALS). The algorithm shows better performance than several other kernel ap-
proximation schemes. In future we want to evaluate more sophisticated but
efficient sampling schemes which could overcome the incoherency assumption in

our analysis.
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